3 research outputs found

    The Unfitted Discontinuous Galerkin Method for Solving the EEG Forward Problem

    Full text link
    Objective: The purpose of this study is to introduce and evaluate the unfitted discontinuous Galerkin finite element method (UDG-FEM) for solving the electroencephalography (EEG) forward problem. Methods: This new approach for source analysis does not use a geometry conforming volume triangulation, but instead uses a structured mesh that does not resolve the geometry. The geometry is described using level set functions and is incorporated implicitly in its mathematical formulation. As no triangulation is necessary, the complexity of a simulation pipeline and the need for manual interaction for patient specific simulations can be reduced and is comparable with that of the FEM for hexahedral meshes. In addition, it maintains conservation laws on a discrete level. Here, we present the theory for UDG-FEM forward modeling, its verification using quasi-analytical solutions in multi-layer sphere models and an evaluation in a comparison with a discontinuous Galerkin (DG-FEM) method on hexahedral and on conforming tetrahedral meshes. We furthermore apply the UDG-FEM forward approach in a realistic head model simulation study. Results: The given results show convergence and indicate a good overall accuracy of the UDG-FEM approach. UDG-FEM performs comparable or even better than DG-FEM on a conforming tetrahedral mesh while providing a less complex simulation pipeline. When compared to DG-FEM on hexahedral meshes, an overall better accuracy is achieved. Conclusion: The UDG-FEM approach is an accurate, flexible and promising method to solve the EEG forward problem. Significance: This study shows the first application of the UDG-FEM approach to the EEG forward problem.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A discontinuous Galerkin Method for the EEG Forward Problem using the Subtraction Approach

    Full text link
    In order to perform electroencephalography (EEG) source reconstruction, i.e., to localize the sources underlying a measured EEG, the electric potential distribution at the electrodes generated by a dipolar current source in the brain has to be simulated, which is the so-called EEG forward problem. To solve it accurately, it is necessary to apply numerical methods that are able to take the individual geometry and conductivity distribution of the subject's head into account. In this context, the finite element method (FEM) has shown high numerical accuracy with the possibility to model complex geometries and conductive features, e.g., white matter conductivity anisotropy. In this article, we introduce and analyze the application of a discontinuous Galerkin (DG) method, a finite element method that includes features of the finite volume framework, to the EEG forward problem. The DG-FEM approach fulfills the conservation property of electric charge also in the discrete case, making it attractive for a variety of applications. Furthermore, as we show, this approach can alleviate modeling inaccuracies that might occur in head geometries when using classical FE methods, e.g., so-called "skull leakage effects", which may occur in areas where the thickness of the skull is in the range of the mesh resolution. Therefore, we derive a DG formulation of the FEM subtraction approach for the EEG forward problem and present numerical results that highlight the advantageous features and the potential benefits of the proposed approach

    Conditionally Gaussian Hypermodels for Cerebral Source Localization

    Full text link
    Bayesian modeling and analysis of the MEG and EEG modalities provide a flexible framework for introducing prior information complementary to the measured data. This prior information is often qualitative in nature, making the translation of the available information into a computational model a challenging task. We propose a generalized gamma family of hyperpriors which allows the impressed currents to be focal and we advocate a fast and efficient iterative algorithm, the Iterative Alternating Sequential (IAS) algorithm for computing maximum a posteriori (MAP) estimates. Furthermore, we show that for particular choices of the scalar parameters specifying the hyperprior, the algorithm effectively approximates popular regularization strategies such as the Minimum Current Estimate and the Minimum Support Estimate. The connection between priorconditioning and adaptive regularization methods is also pointed out. The posterior densities are explored by means of a Markov Chain Monte Carlo (MCMC) strategy suitable for this family of hypermodels. The computed experiments suggest that the known preference of regularization methods for superficial sources over deep sources is a property of the MAP estimators only, and that estimation of the posterior mean in the hierarchical model is better adapted for localizing deep sources.Comment: 30 page
    corecore