301 research outputs found

    A Novel Approach to Neighborhood Fair Energy Trading in a Distribution Network of Multiple Microgrid Clusters

    Get PDF

    Peer-to-Peer Energy Trading for Networked Microgrids

    Get PDF
    Considering the limitations of the existing centralized power infrastructure, research interests have been directed to decentralized smart power systems constructed as networks of interconnected microgrids. Therefore, it has become critical to develop secure and efficient energy trading mechanisms among networked microgrids for reliability and economic mutual benefits. Furthermore, integrating blockchain technologies into the energy sector has gained significant interest among researchers and industry professionals. Considering these trends, the work in this thesis focuses on developing Peer-to-Peer (P2P) energy trading models to facilitate transactions among microgrids in a multiagent network. Price negotiation mechanisms are proposed for both islanded and grid-connected microgrid networks. To enable a trusted settlement of electricity trading transactions, a two-stage blockchain-based settlement consensus protocol is also developed. Simulation results have shown that the model has successfully facilitated energy trading for networked microgrids

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    Peer-to-peer energy trading in a prosumer based community microgrid: a game-theoretic model

    Get PDF
    This paper proposes a novel game-theoretic model for peer-to-peer (P2P) energy trading among the prosumers in a community. The buyers can adjust the energy consumption behavior based on the price and quantity of the energy offered by the sellers. There exist two separate competitions during the trading process: 1) price competition among the sellers; and 2) seller selection competition among the buyers. The price competition among the sellers is modeled as a noncooperative game. The evolutionary game theory is used to model the dynamics of the buyers for selecting sellers. Moreover, an M-leader and N-follower Stackelberg game approach is used to model the interaction between buyers and sellers. Two iterative algorithms are proposed for the implementation of the games such that an equilibrium state exists in each of the games. The proposed method is applied to a small community microgrid with photo-voltaic and energy storage systems. Simulation results show the convergence of the algorithms and the effectiveness of the proposed model to handle P2P energy trading. The results also show that P2P energy trading provides significant financial and technical benefits to the community, and it is emerging as an alternative to cost-intensive energy storage systems

    Smart Grid Enabling Low Carbon Future Power Systems Towards Prosumers Era

    Get PDF
    In efforts to meet the targets of carbon emissions reduction in power systems, policy makers formulate measures for facilitating the integration of renewable energy sources and demand side carbon mitigation. Smart grid provides an opportunity for bidirectional communication among policy makers, generators and consumers. With the help of smart meters, increasing number of consumers is able to produce, store, and consume energy, giving them the new role of prosumers. This thesis aims to address how smart grid enables prosumers to be appropriately integrated into energy markets for decarbonising power systems. This thesis firstly proposes a Stackelberg game-theoretic model for dynamic negotiation of policy measures and determining optimal power profiles of generators and consumers in day-ahead market. Simulation results show that the proposed model is capable of saving electricity bills, reducing carbon emissions, and increasing the penetration of renewable energy sources. Secondly, a data-driven prosumer-centric energy scheduling tool is developed by using learning approaches to reduce computational complexity from model-based optimisation. This scheduling tool exploits convolutional neural networks to extract prosumption patterns, and uses scenarios to analyse possible variations of uncertainties caused by the intermittency of renewable energy sources and flexible demand. Case studies confirm that the proposed scheduling tool can accurately predict optimal scheduling decisions under various system scales and uncertain scenarios. Thirdly, a blockchain-based peer-to-peer trading framework is designed to trade energy and carbon allowance. The bidding/selling prices of individual prosumers can directly incentivise the reshaping of prosumption behaviours. Case studies demonstrate the execution of smart contract on the Ethereum blockchain and testify that the proposed trading framework outperforms the centralised trading and aggregator-based trading in terms of regional energy balance and reducing carbon emissions caused by long-distance transmissions
    • …
    corecore