1,733 research outputs found

    Underwater Wireless Communications for Cooperative Robotics with UWSim-NET

    Get PDF
    The increasing number of autonomous underwater vehicles (AUVs) cooperating in underwater operations has motivated the use of wireless communications. Their modeling can minimize the impact of their limited performance in real-time robotic interventions. However, robotic frameworks hardly ever consider the communications, and network simulators are not suitable for HIL experiments. In this work, the UWSim-NET is presented, an open source tool to simulate the impact of communications in underwater robotics. It gathers the benefits of NS3 in modeling communication networks with those of the underwater robot simulator (UWSim) and the robot operating system (ROS) in modeling robotic systems. This article also shows the results of three experiments that demonstrate the capabilities of UWSim-NET in modeling radio frequency (RF) and acoustic links in underwater scenarios. It also permits evaluating several MAC protocols such as additive links online Hawaii area (ALOHA), slotted floor acquisition multiple access (S-FAMA) and user defined protocols. A third experiment demonstrated the excellent capabilities of UWSim-NET in conducting hardware in the loop (HIL) experiments

    Contribution to Research on Underwater Sensor Networks Architectures by Means of Simulation

    Full text link
    El concepto de entorno inteligente concibe un mundo donde los diferentes tipos de dispositivos inteligentes colaboran para conseguir un objetivo común. En este concepto, inteligencia hace referencia a la habilidad de adquirir conocimiento y aplicarlo de forma autónoma para conseguir el objetivo común, mientras que entorno hace referencia al mundo físico que nos rodea. Por tanto, un entorno inteligente se puede definir como aquel que adquiere conocimiento de su entorno y aplicándolo permite mejorar la experiencia de sus habitantes. La computación ubicua o generalizada permitirá que este concepto de entorno inteligente se haga realidad. Normalmente, el término de computación ubicua hace referencia al uso de dispositivos distribuidos por el mundo físico, pequeños y de bajo precio, que pueden comunicarse entre ellos y resolver un problema de forma colaborativa. Cuando esta comunicación se lleva a cabo de forma inalámbrica, estos dispositivos forman una red de sensores inalámbrica o en inglés, Wireless Sensor Network (WSN). Estas redes están atrayendo cada vez más atención debido al amplio espectro de aplicaciones que tienen, des de soluciones para el ámbito militar hasta aplicaciones para el gran consumo. Esta tesis se centra en las redes de sensores inalámbricas y subacuáticas o en inglés, Underwater Wireless Sensor Networks (UWSN). Estas redes, a pesar de compartir los mismos principios que las WSN, tienen un medio de transmisión diferente que cambia su forma de comunicación de ondas de radio a ondas acústicas. Este cambio hace que ambas redes sean diferentes en muchos aspectos como el retardo de propagación, el ancho de banda disponible, el consumo de energía, etc. De hecho, las señales acústicas tienen una velocidad de propagación cinco órdenes de magnitud menor que las señales de radio. Por tanto, muchos algoritmos y protocolos necesitan adaptarse o incluso rediseñarse. Como el despliegue de este tipo de redes puede ser bastante complicado y caro, se debe planificar de forma precisa el hardware y los algoritmos que se necesitan. Con esta finalidad, las simulaciones pueden resultar una forma muy conveniente de probar todas las variables necesarias antes del despliegue de la aplicación. A pesar de eso, un nivel de precisión adecuado que permita extraer resultados y conclusiones confiables, solamente se puede conseguir utilizando modelos precisos y parámetros reales. Esta tesis propone un ecosistema para UWSN basado en herramientas libres y de código abierto. Este ecosistema se compone de un modelo de recolección de energía y unmodelo de unmódemde bajo coste y bajo consumo con un sistema de activación remota que, junto con otros modelos ya implementados en las herramientas, permite la realización de simulaciones precisas con datos ambientales del tiempo y de las condiciones marinas del lugar donde la aplicación objeto de estudio va a desplegarse. Seguidamente, este ecosistema se utiliza con éxito en el estudio y evaluación de diferentes protocolos de transmisión aplicados a una aplicación real de monitorización de una piscifactoría en la costa del mar Mediterráneo, que es parte de un proyecto de investigación español (CICYT CTM2011-2961-C02-01). Finalmente, utilizando el modelo de recolección de energía, esta plataforma de simulación se utiliza para medir los requisitos de energía de la aplicación y extraer las necesidades de hardware mínimas.Climent Bayarri, JS. (2014). Contribution to Research on Underwater Sensor Networks Architectures by Means of Simulation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/3532

    Underwater Acoustic Modems

    Full text link
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Due to the growing interest using underwater acoustic networks, there are more and more research papers about underwater communications. These papers are mainly focused on deployments and studies about the constraints of the underwater medium. The underwater acoustic channel is highly variable and the signal transmission can change according to environmental factors such as the temperature, pressure or salinity of the water. For this reason, it is important to know how these devices are developed and the maximum distance and data transfer rates they can achieve. To this end, this paper presents an exhaustive study of existing underwater acoustic modems where their main features are highlighted. We also review the main features of their hardware. All presented proposals in the research literature are compared with commercial underwater acoustic modems. Finally, we analyze different programs and improvements of existing network simulators that are often used to simulate and estimate the behavior of underwater networks.This work was supported by the Ministerio de Ciencia e Innovacion through the Plan Nacional de I+D+i 2008-2011 within the Subprograma de Proyectos de Investigacion Fundamental under Project TEC2011-27516. The associate editor coordinating the review of this paper and approving it for publication was Dr. Lei Shu. (Corresponding author: Jaime Lloret.)Sendra, S.; Lloret, J.; Jimenez, JM.; Parra-Boronat, L. (2015). Underwater Acoustic Modems. IEEE Sensors Journal. 16(11):4063-4071. https://doi.org/10.1109/JSEN.2015.2434890S40634071161

    A survey on network simulators in three-dimensional wireless ad hoc and sensor networks

    Get PDF
    © 2016 The Author(s). As steady research in wireless ad hoc and sensor networks is going on, performance evaluation through relevant network simulator becomes indispensable procedure to demonstrate superiority to comparative schemes and suitability in most literatures. Thus, it is very important to establish credibility of simulation results by investigating merits and limitations of each simulator prior to selection. Based on this motivation, in this article, we present a comprehensive survey on current network simulators for new emerging research area, three-dimensional wireless ad hoc and sensor networks which is represented by airborne ad hoc networks and underwater sensor networks by reviewing major existing simulators as well as presenting their main features in several aspects. In addition, we address the outstanding mobility models which are main components in simulation study for self-organizing ad hoc networks. Finally, open research issues and research challenges are discussed and presented

    Performance of electromagnetic communication in underwater wireless sensor networks

    Get PDF
    Underwater wireless sensor networks (WSNs) composed of a number of sensor nodes that are deployed to conduct a collaborative monitoring task. Wireless signals are used for communication between the sensor nodes. Acoustic signals are the dominant signals used as a wireless communication medium in underwater WSNs due to the relatively low absorption in the underwater environments. Acoustic signals face a lot of challenges such as ambient noise, manmade noise, limited bandwidth, multipath and low propagation speed. Some of these challenges become more severe in shallow water environment where a high level of ambient and mankind noise, turbidity and multipath propagation are available. Therefore, electromagnetic signals can be applied as an alternative communication signal for underwater WSNs in the shallow water. In this project, the performance of EM communication in underwater WSNs is investigated for the shallow water environment. Theoretical calculations and practical experiments are conducted in fresh and seawater. It is shown that signals propagate for longer ranges in freshwater comparing to seawater. Theoretical results show that attenuation of electromagnetic communication in seawater is much higher than in fresh water. The attenuation is increasing with the increasing of frequency. In addition, velocity of the signal is increasing as the frequency is increasing while loss tangent is decreasing as the frequency increasing. Based on practical experiments, freshwater medium permits short ranges EM communication that does not exceed 25.1 cm for 2.4 GHz frequency. On the other hand, communication in seawater is very difficult to achieve for the same high frequency. Path loss exponent was estimated for freshwater environment based on logdistance path loss model. The estimation was achieved through a comparison between theoretical calculations and practical measurements. The path loss exponent for EM communication in fresh water was estimated to be in the range of 2.3 to 2.4

    Receiver-Initiated Handshaking MAC Based On Traffic Estimation for Underwater Sensor Networks

    Get PDF
    In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications

    Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks

    Full text link
    In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However,the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-basedreceiver-initiated MAC(TERI-MAC)to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications

    Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols?

    Get PDF
    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios

    Channel modeling for underwater acoustic network simulation

    Get PDF
    corecore