11,384 research outputs found

    Biomedical ontology alignment: An approach based on representation learning

    Get PDF
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic similarity information becomes inscribed onto fields of pre-trained word vectors. The resulting framework also incorporates a novel outlier detection mechanism based on a denoising autoencoder that is shown to improve performance. An ontology matching system derived using the proposed framework achieved an F-score of 94% on an alignment scenario involving the Adult Mouse Anatomical Dictionary and the Foundational Model of Anatomy ontology (FMA) as targets. This compares favorably with the best performing systems on the Ontology Alignment Evaluation Initiative anatomy challenge. We performed additional experiments on aligning FMA to NCI Thesaurus and to SNOMED CT based on a reference alignment extracted from the UMLS Metathesaurus. Our system obtained overall F-scores of 93.2% and 89.2% for these experiments, thus achieving state-of-the-art results

    Function-based Intersubject Alignment of Human Cortical Anatomy

    Get PDF
    Making conclusions about the functional neuroanatomical organization of the human brain requires methods for relating the functional anatomy of an individual's brain to population variability. We have developed a method for aligning the functional neuroanatomy of individual brains based on the patterns of neural activity that are elicited by viewing a movie. Instead of basing alignment on functionally defined areas, whose location is defined as the center of mass or the local maximum response, the alignment is based on patterns of response as they are distributed spatially both within and across cortical areas. The method is implemented in the two-dimensional manifold of an inflated, spherical cortical surface. The method, although developed using movie data, generalizes successfully to data obtained with another cognitive activation paradigm—viewing static images of objects and faces—and improves group statistics in that experiment as measured by a standard general linear model (GLM) analysis

    How do Ontology Mappings Change in the Life Sciences?

    Full text link
    Mappings between related ontologies are increasingly used to support data integration and analysis tasks. Changes in the ontologies also require the adaptation of ontology mappings. So far the evolution of ontology mappings has received little attention albeit ontologies change continuously especially in the life sciences. We therefore analyze how mappings between popular life science ontologies evolve for different match algorithms. We also evaluate which semantic ontology changes primarily affect the mappings. We further investigate alternatives to predict or estimate the degree of future mapping changes based on previous ontology and mapping transitions.Comment: Keywords: mapping evolution, ontology matching, ontology evolutio

    The Foundational Model of Anatomy Ontology

    Get PDF
    Anatomy is the structure of biological organisms. The term also denotes the scientific discipline devoted to the study of anatomical entities and the structural and developmental relations that obtain among these entities during the lifespan of an organism. Anatomical entities are the independent continuants of biomedical reality on which physiological and disease processes depend, and which, in response to etiological agents, can transform themselves into pathological entities. For these reasons, hard copy and in silico information resources in virtually all fields of biology and medicine, as a rule, make extensive reference to anatomical entities. Because of the lack of a generalizable, computable representation of anatomy, developers of computable terminologies and ontologies in clinical medicine and biomedical research represented anatomy from their own more or less divergent viewpoints. The resulting heterogeneity presents a formidable impediment to correlating human anatomy not only across computational resources but also with the anatomy of model organisms used in biomedical experimentation. The Foundational Model of Anatomy (FMA) is being developed to fill the need for a generalizable anatomy ontology, which can be used and adapted by any computer-based application that requires anatomical information. Moreover it is evolving into a standard reference for divergent views of anatomy and a template for representing the anatomy of animals. A distinction is made between the FMA ontology as a theory of anatomy and the implementation of this theory as the FMA artifact. In either sense of the term, the FMA is a spatial-structural ontology of the entities and relations which together form the phenotypic structure of the human organism at all biologically salient levels of granularity. Making use of explicit ontological principles and sound methods, it is designed to be understandable by human beings and navigable by computers. The FMA’s ontological structure provides for machine-based inference, enabling powerful computational tools of the future to reason with biomedical data

    Classifying tree structures using elastic matching of sequence encodings

    Get PDF
    This document is the Accepted Manuscript version of the following article: Angeliki Skoura, Iosif Mporas, Vasileios Megalooikonomou, ‘Classifying tree structures using elastic matching of sequence encodings’, Neurocomputing, Vol. 163, pp. 151-159, February 2015. The Version of Record is available online at: DOI: https://doi.org/10.1016/j.neucom.2014.08.083. This Manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Structures of tree topology are frequently encountered in nature and in a range of scientific domains. In this paper, a multi-step framework is presented to classify tree topologies introducing the idea of elastic matching of their sequence encodings. Initially, representative sequences of the branching topologies are obtained using node labeling and tree traversal schemes. The similarity between tree topologies is then quantified by applying elastic matching techniques. The resulting sequence alignment reveals corresponding node groups providing a better understanding of matching tree topologies. The new similarity approach is explored using various classification algorithms and is applied to a medical dataset outperforming state-of-the-art techniques by at least 6.6% and 3.5% in terms of absolute specificity and accuracy correspondingly.Peer reviewe

    Evaluating Pre-trained Word Embeddings in domain specific Ontology Matching

    Get PDF
    Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2022The ontology matching process focuses on discovering mappings between two concepts from distinct ontologies, a source and a target. It is a fundamental step when trying to integrate heterogeneous data sources that are described in ontologies. This data represents an even more challenging problem since we are working with complex data as biomedical data. Thus, derived from the necessity of keeping on improving ontology matching techniques, this dissertation focused on implementing a new approach to the AML pipeline to calculate similarities between entities from two distinct ontologies. For the implementation of this dissertation, we used some of the OAEI tracks, such as Anatomy and LargeBio, to apply a new algorithm and evaluate if it improves AML’s results against a refer ence alignment. This new approach consisted of using pre-trained word embeddings of five different types, BioWordVec Extrinsic, BioWordVec Intrinsic, PubMed+PC, PubMed+PC+Wikipedia and English Wikipedia. These pre-trained word embeddings use a machine learning technique, Word2Vec, and were used in this work since it allows to carry the semantic meaning inherent to the words represented with the corresponding vector. Word embeddings allowed that each concept of each ontology was represented with a corresponding vector to see if, with that information, it was possible to improve how relations between concepts were determined in the AML system. The similarity between concepts was calculated through the cosine distance and the evaluation of the new alignment used the metrics precision recall and F-measure. Although we could not prove that word embeddings improve AML current results, this implementation could be refined, and the technique can be still an option to consider in future work if applied in some other way
    corecore