1,139 research outputs found

    Importance sampling methods for Bayesian discrimination between embedded models

    Full text link
    This paper surveys some well-established approaches on the approximation of Bayes factors used in Bayesian model choice, mostly as covered in Chen et al. (2000). Our focus here is on methods that are based on importance sampling strategies rather than variable dimension techniques like reversible jump MCMC, including: crude Monte Carlo, maximum likelihood based importance sampling, bridge and harmonic mean sampling, as well as Chib's method based on the exploitation of a functional equality. We demonstrate in this survey how these different methods can be efficiently implemented for testing the significance of a predictive variable in a probit model. Finally, we compare their performances on a real dataset

    Graphical models for mixed data with categorical latent variables

    Get PDF
    Aquesta tesi pretén proporcionar una visió general dels models gràfics probabilístics en el context d'altres mètodes d'aprenentatge automàtic àmpliament utilitzats, i com aquests mètodes es poden formalitzar utilitzant models de independència condicionada i estadística algebraica. A base de comparar les Mixtures Gaussianes amb les Xarxes Neuronals interpretades com a models generatius, proposem un model gràfic per a dades mixtes (variables discretes i contítnues) que proporciona una base teòrica sòlida i una manera d'analitzar la Màquina de Boltzmann Restringida Gaussiana-Bernoulli. Això s'utilitza per modelar variables amb una distribució gaussiana condicionada, amb variables latents discretes. A més a més, aquesta tesi es centra en els procediments d'aprenentatge i mostreig, així com en l'ús de tècniques d'estadística algebraica per a descriure la expressivitat del model, fent servir models d'independència i de mixtura per a les varietats semi-algebraiques dels cumulants.Esta tesis pretende proporcionar una visión general de los modelos gráficos probabilísticos en el contexto de otros métodos de aprendizaje automático ampliamente utilizados, y cómo estos métodos pueden ser formalizados utilizando modelos de independencia condicional y estadística algebraica. Al comparar los populares modelos de Mezclas Gaussianas con las redes neuronales vistas como modelos generativos, proponemos un modelo gráfico para datos mixtos (variables discretas y continuas) que sirve de base teórica sólida a la vez que permite analizar la Máquina de Boltzmann Restringida Gaussiana-Bernoulli. Esto se utiliza para modelar variables con una distribución gaussiana condicionada, con variables latentes discretas. Además, esta tesis se explaya sobre los procedimientos de aprendizaje y muestreo del modelo, así como en el uso de técnicas de estadística algebraica para describir la expresividad del mismo, utilizando modelos de independencia y mezcla para las variedades semi-algebraicas de los cumulantes.This thesis aims to provide an overview of probabilistic graphical models in the context of other widely used machine learning methods, and how these methods can be formalised using conditional independence models and algebraic statistics. By comparing the extremely popular Gaussian Mixture Models and Neural Networks as generative graphical models, we are able to propose a graphical model for mixed data (discrete and continuous components) that provides a solid theoretical background and a way to analyse the Gaussian-Bernoulli Restricted Boltzmann Machine. This is used to model variables with a Gaussian conditional distribution, with discrete latent variables. On top of that, this thesis then goes into learning and sampling procedures as well as using techniques from algebraic statistics to further depict the expressibility of the model, making use of independence and mixture models for cumulant semi-algebraic varieties.Outgoin

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Range separation: The divide between local structures and field theories

    Get PDF
    This work presents parallel histories of the development of two modern theories of condensed matter: the theory of electron structure in quantum mechanics, and the theory of liquid structure in statistical mechanics. Comparison shows that key revelations in both are not only remarkably similar, but even follow along a common thread of controversy that marks progress from antiquity through to the present. This theme appears as a creative tension between two competing philosophies, that of short range structure (atomistic models) on the one hand, and long range structure (continuum or density functional models) on the other. The timeline and technical content are designed to build up a set of key relations as guideposts for using density functional theories together with atomistic simulation.Comment: Expanded version of a 30 minute talk delivered at the 2018 TSRC workshop on Ions in Solution, to appear in the March, 2019 issue of Substantia (https://riviste.fupress.net/index.php/subs/index

    A Tutorial on Fisher Information

    Get PDF
    In many statistical applications that concern mathematical psychologists, the concept of Fisher information plays an important role. In this tutorial we clarify the concept of Fisher information as it manifests itself across three different statistical paradigms. First, in the frequentist paradigm, Fisher information is used to construct hypothesis tests and confidence intervals using maximum likelihood estimators; second, in the Bayesian paradigm, Fisher information is used to define a default prior; lastly, in the minimum description length paradigm, Fisher information is used to measure model complexity

    Generalized Bayesian inference under prior-data conflict

    Get PDF
    This thesis is concerned with the generalisation of Bayesian inference towards the use of imprecise or interval probability, with a focus on model behaviour in case of prior-data conflict. Bayesian inference is one of the main approaches to statistical inference. It requires to express (subjective) knowledge on the parameter(s) of interest not incorporated in the data by a so-called prior distribution. All inferences are then based on the so-called posterior distribution, the subsumption of prior knowledge and the information in the data calculated via Bayes' Rule. The adequate choice of priors has always been an intensive matter of debate in the Bayesian literature. While a considerable part of the literature is concerned with so-called non-informative priors aiming to eliminate (or, at least, to standardise) the influence of priors on posterior inferences, inclusion of specific prior information into the model may be necessary if data are scarce, or do not contain much information about the parameter(s) of interest; also, shrinkage estimators, common in frequentist approaches, can be considered as Bayesian estimators based on informative priors. When substantial information is used to elicit the prior distribution through, e.g, an expert's assessment, and the sample size is not large enough to eliminate the influence of the prior, prior-data conflict can occur, i.e., information from outlier-free data suggests parameter values which are surprising from the viewpoint of prior information, and it may not be clear whether the prior specifications or the integrity of the data collecting method (the measurement procedure could, e.g., be systematically biased) should be questioned. In any case, such a conflict should be reflected in the posterior, leading to very cautious inferences, and most statisticians would thus expect to observe, e.g., wider credibility intervals for parameters in case of prior-data conflict. However, at least when modelling is based on conjugate priors, prior-data conflict is in most cases completely averaged out, giving a false certainty in posterior inferences. Here, imprecise or interval probability methods offer sound strategies to counter this issue, by mapping parameter uncertainty over sets of priors resp. posteriors instead of over single distributions. This approach is supported by recent research in economics, risk analysis and artificial intelligence, corroborating the multi-dimensional nature of uncertainty and concluding that standard probability theory as founded on Kolmogorov's or de Finetti's framework may be too restrictive, being appropriate only for describing one dimension, namely ideal stochastic phenomena. The thesis studies how to efficiently describe sets of priors in the setting of samples from an exponential family. Models are developed that offer enough flexibility to express a wide range of (partial) prior information, give reasonably cautious inferences in case of prior-data conflict while resulting in more precise inferences when prior and data agree well, and still remain easily tractable in order to be useful for statistical practice. Applications in various areas, e.g. common-cause failure modeling and Bayesian linear regression, are explored, and the developed approach is compared to other imprecise probability models.Das Thema dieser Dissertation ist die Generalisierung der Bayes-Inferenz durch die Verwendung von unscharfen oder intervallwertigen Wahrscheinlichkeiten. Ein besonderer Fokus liegt dabei auf dem Modellverhalten in dem Fall, dass Vorwissen und beobachtete Daten in Konflikt stehen. Die Bayes-Inferenz ist einer der Hauptansätze zur Herleitung von statistischen Inferenzmethoden. In diesem Ansatz muss (eventuell subjektives) Vorwissen über die Modellparameter in einer sogenannten Priori-Verteilung (kurz: Priori) erfasst werden. Alle Inferenzaussagen basieren dann auf der sogenannten Posteriori-Verteilung (kurz: Posteriori), welche mittels des Satzes von Bayes berechnet wird und das Vorwissen und die Informationen in den Daten zusammenfasst. Wie eine Priori-Verteilung in der Praxis zu wählen sei, ist dabei stark umstritten. Ein großer Teil der Literatur befasst sich mit der Bestimmung von sogenannten nichtinformativen Prioris. Diese zielen darauf ab, den Einfluss der Priori auf die Posteriori zu eliminieren oder zumindest zu standardisieren. Falls jedoch nur wenige Daten zur Verfügung stehen, oder diese nur wenige Informationen in Bezug auf die Modellparameter bereitstellen, kann es hingegen nötig sein, spezifische Priori-Informationen in ein Modell einzubeziehen. Außerdem können sogenannte Shrinkage-Schätzer, die in frequentistischen Ansätzen häufig zum Einsatz kommen, als Bayes-Schätzer mit informativen Prioris angesehen werden. Wenn spezifisches Vorwissen zur Bestimmung einer Priori genutzt wird (beispielsweise durch eine Befragung eines Experten), aber die Stichprobengröße nicht ausreicht, um eine solche informative Priori zu überstimmen, kann sich ein Konflikt zwischen Priori und Daten ergeben. Dieser kann sich darin äußern, dass die beobachtete (und von eventuellen Ausreißern bereinigte) Stichprobe Parameterwerte impliziert, die aus Sicht der Priori äußerst überraschend und unerwartet sind. In solch einem Fall kann es unklar sein, ob eher das Vorwissen oder eher die Validität der Datenerhebung in Zweifel gezogen werden sollen. (Es könnten beispielsweise Messfehler, Kodierfehler oder eine Stichprobenverzerrung durch selection bias vorliegen.) Zweifellos sollte sich ein solcher Konflikt in der Posteriori widerspiegeln und eher vorsichtige Inferenzaussagen nach sich ziehen; die meisten Statistiker würden daher davon ausgehen, dass sich in solchen Fällen breitere Posteriori-Kredibilitätsintervalle für die Modellparameter ergeben. Bei Modellen, die auf der Wahl einer bestimmten parametrischen Form der Priori basieren, welche die Berechnung der Posteriori wesentlich vereinfachen (sogenannte konjugierte Priori-Verteilungen), wird ein solcher Konflikt jedoch einfach ausgemittelt. Dann werden Inferenzaussagen, die auf einer solchen Posteriori basieren, den Anwender in falscher Sicherheit wiegen. In dieser problematischen Situation können Intervallwahrscheinlichkeits-Methoden einen fundierten Ausweg bieten, indem Unsicherheit über die Modellparameter mittels Mengen von Prioris beziehungsweise Posterioris ausgedrückt wird. Neuere Erkenntnisse aus Risikoforschung, Ökonometrie und der Forschung zu künstlicher Intelligenz, die die Existenz von verschiedenen Arten von Unsicherheit nahelegen, unterstützen einen solchen Modellansatz, der auf der Feststellung aufbaut, dass die auf den Ansätzen von Kolmogorov oder de Finetti basierende übliche Wahrscheinlichkeitsrechung zu restriktiv ist, um diesen mehrdimensionalen Charakter von Unsicherheit adäquat einzubeziehen. Tatsächlich kann in diesen Ansätzen nur eine der Dimensionen von Unsicherheit modelliert werden, nämlich die der idealen Stochastizität. In der vorgelegten Dissertation wird untersucht, wie sich Mengen von Prioris für Stichproben aus Exponentialfamilien effizient beschreiben lassen. Wir entwickeln Modelle, die eine ausreichende Flexibilität gewährleisten, sodass eine Vielfalt von Ausprägungen von partiellem Vorwissen beschrieben werden kann. Diese Modelle führen zu vorsichtigen Inferenzaussagen, wenn ein Konflikt zwischen Priori und Daten besteht, und ermöglichen dennoch präzisere Aussagen für den Fall, dass Priori und Daten im Wesentlichen übereinstimmen, ohne dabei die Einsatzmöglichkeiten in der statistischen Praxis durch eine zu hohe Komplexität in der Anwendung zu erschweren. Wir ermitteln die allgemeinen Inferenzeigenschaften dieser Modelle, die sich durch einen klaren und nachvollziehbaren Zusammenhang zwischen Modellunsicherheit und der Präzision von Inferenzaussagen auszeichnen, und untersuchen Anwendungen in verschiedenen Bereichen, unter anderem in sogenannten common-cause-failure-Modellen und in der linearen Bayes-Regression. Zudem werden die in dieser Dissertation entwickelten Modelle mit anderen Intervallwahrscheinlichkeits-Modellen verglichen und deren jeweiligen Stärken und Schwächen diskutiert, insbesondere in Bezug auf die Präzision von Inferenzaussagen bei einem Konflikt von Vorwissen und beobachteten Daten

    Hidden Markov models for wavelet-based blind source separation

    Full text link
    corecore