5,231 research outputs found

    Chunky and Equal-Spaced Polynomial Multiplication

    Get PDF
    Finding the product of two polynomials is an essential and basic problem in computer algebra. While most previous results have focused on the worst-case complexity, we instead employ the technique of adaptive analysis to give an improvement in many "easy" cases. We present two adaptive measures and methods for polynomial multiplication, and also show how to effectively combine them to gain both advantages. One useful feature of these algorithms is that they essentially provide a gradient between existing "sparse" and "dense" methods. We prove that these approaches provide significant improvements in many cases but in the worst case are still comparable to the fastest existing algorithms.Comment: 23 Pages, pdflatex, accepted to Journal of Symbolic Computation (JSC

    Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures

    Get PDF
    Feltor is a modular and free scientific software package. It allows developing platform independent code that runs on a variety of parallel computer architectures ranging from laptop CPUs to multi-GPU distributed memory systems. Feltor consists of both a numerical library and a collection of application codes built on top of the library. Its main target are two- and three-dimensional drift- and gyro-fluid simulations with discontinuous Galerkin methods as the main numerical discretization technique. We observe that numerical simulations of a recently developed gyro-fluid model produce non-deterministic results in parallel computations. First, we show how we restore accuracy and bitwise reproducibility algorithmically and programmatically. In particular, we adopt an implementation of the exactly rounded dot product based on long accumulators, which avoids accuracy losses especially in parallel applications. However, reproducibility and accuracy alone fail to indicate correct simulation behaviour. In fact, in the physical model slightly different initial conditions lead to vastly different end states. This behaviour translates to its numerical representation. Pointwise convergence, even in principle, becomes impossible for long simulation times. In a second part, we explore important performance tuning considerations. We identify latency and memory bandwidth as the main performance indicators of our routines. Based on these, we propose a parallel performance model that predicts the execution time of algorithms implemented in Feltor and test our model on a selection of parallel hardware architectures. We are able to predict the execution time with a relative error of less than 25% for problem sizes between 0.1 and 1000 MB. Finally, we find that the product of latency and bandwidth gives a minimum array size per compute node to achieve a scaling efficiency above 50% (both strong and weak)

    Efficient dot product over word-size finite fields

    Full text link
    We want to achieve efficiency for the exact computation of the dot product of two vectors over word-size finite fields. We therefore compare the practical behaviors of a wide range of implementation techniques using different representations. The techniques used include oating point representations, discrete logarithms, tabulations, Montgomery reduction, delayed modulus
    • …
    corecore