66,410 research outputs found

    Spectral comparison of large urban graphs

    Get PDF
    The spectrum of an axial graph is proposed as a means for comparison between spaces, particularly for measuring between very large and complex graphs. A number of methods have been used in recent years for comparative analysis within large sets of urban areas, both to investigate properties of specific known types of street network or to propose a taxonomy of urban morphology based on an analytical technique. In many cases, a single or small range of predefined, scalar measures such as metric distance, integration, control or clustering coefficient have been used to compare the graphs. While these measures are well understood theoretically, their low dimensionality determines the range of observations that can ultimately be drawn from the data. Spectral analysis consists of a high dimensional vector representing each space, between which metric distance may be measured to indicate the overall difference between two spaces, or subspaces may be extracted to correspond to certain features. It is used for comparison of entire urban graphs, to determine similarities (and differences) in their overall structure. Results are shown of a comparison of 152 cities distributed around the world. The clustering of cities of similar properties in a high dimensional space is discussed. Principal and nonlinear components of the data set indicate significant correlations in the graph similarities between cities and their proximity to one another, suggesting that cultural features based on location are evident in the city form and that these can be quantified by the proposed method. Results of classification tests show that a city’s location can be estimated based purely on its form. The high dimensionality of the spectra is beneficial for its utility in data-mining applications that can draw correlations with other data sets such as land use information. It is shown how further processing by supervised learning allows the extraction of relevant features. A methodological comparison is also drawn with statistical studies that use a strong correlation between human genetic markers and geographical location of populations to derive detailed reconstructions of prehistoric migration. Thus, it is suggested that the method may be utilised for mapping the transfer of cultural memes by measuring comparison between cities

    Self-Assembly of Geometric Space from Random Graphs

    Full text link
    We present a Euclidean quantum gravity model in which random graphs dynamically self-assemble into discrete manifold structures. Concretely, we consider a statistical model driven by a discretisation of the Euclidean Einstein-Hilbert action; contrary to previous approaches based on simplicial complexes and Regge calculus our discretisation is based on the Ollivier curvature, a coarse analogue of the manifold Ricci curvature defined for generic graphs. The Ollivier curvature is generally difficult to evaluate due to its definition in terms of optimal transport theory, but we present a new exact expression for the Ollivier curvature in a wide class of relevant graphs purely in terms of the numbers of short cycles at an edge. This result should be of independent intrinsic interest to network theorists. Action minimising configurations prove to be cubic complexes up to defects; there are indications that such defects are dynamically suppressed in the macroscopic limit. Closer examination of a defect free model shows that certain classical configurations have a geometric interpretation and discretely approximate vacuum solutions to the Euclidean Einstein-Hilbert action. Working in a configuration space where the geometric configurations are stable vacua of the theory, we obtain direct numerical evidence for the existence of a continuous phase transition; this makes the model a UV completion of Euclidean Einstein gravity. Notably, this phase transition implies an area-law for the entropy of emerging geometric space. Certain vacua of the theory can be interpreted as baby universes; we find that these configurations appear as stable vacua in a mean field approximation of our model, but are excluded dynamically whenever the action is exact indicating the dynamical stability of geometric space. The model is intended as a setting for subsequent studies of emergent time mechanisms.Comment: 26 pages, 9 figures, 2 appendice

    Strong-coupling scales and the graph structure of multi-gravity theories

    Get PDF
    In this paper we consider how the strong-coupling scale, or perturbative cutoff, in a multi-gravity theory depends upon the presence and structure of interactions between the different fields. This can elegantly be rephrased in terms of the size and structure of the `theory graph' which depicts the interactions in a given theory. We show that the question can be answered in terms of the properties of various graph-theoretical matrices, affording an efficient way to estimate and place bounds on the strong-coupling scale of a given theory. In light of this we also consider the problem of relating a given theory graph to a discretised higher dimensional theory, a la dimensional deconstruction.Comment: 23 pages, 7 figures; v2: additional references included, and minor typos corrected; version published in JHE

    Extremal black holes in the Ho\v{r}ava-Lifshitz gravity

    Full text link
    We study the near-horizon geometry of extremal black holes in the z=3z=3 Ho\v{r}ava-Lifshitz gravity with a flow parameter λ\lambda. For λ>1/2\lambda>1/2, near-horizon geometry of extremal black holes are AdS2×S2_2 \times S^2 with different radii, depending on the (modified) Ho\v{r}ava-Lifshitz gravity. For 1/3≤λ≤1/21/3\le \lambda \le 1/2, the radius v2v_2 of S2S^2 is negative, which means that the near-horizon geometry is ill-defined and the corresponding Bekenstein-Hawking entropy is zero. We show explicitly that the entropy function approach does not work for obtaining the Bekenstein-Hawking entropy of extremal black holes.Comment: 18 pages, v2:some points on Lifshitz black holes claified, v3: version to appear in EJP

    Loop-Generated Bounds on Changes to the Graviton Dispersion Relation

    Get PDF
    We identify the effective theory appropriate to the propagation of massless bulk fields in brane-world scenarios, to show that the dominant low-energy effect of asymmetric warping in the bulk is to modify the dispersion relation of the effective 4-dimensional modes. We show how such changes to the graviton dispersion relation may be bounded through the effects they imply, through loops, for the propagation of standard model particles. We compute these bounds and show that they provide, in some cases, the strongest constraints on nonstandard gravitational dispersions. The bounds obtained in this way are the strongest for the fewest extra dimensions and when the extra-dimensional Planck mass is the smallest. Although the best bounds come for warped 5-D scenarios, for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop can lead to a bound on the graviton speed which is comparable with other constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte

    Non-linear sigma models with anti-de Sitter target spaces

    Full text link
    We present evidence that there is a non-trivial fixed point for the AdS_{D+1} non-linear sigma model in two dimensions, without any matter fields or additional couplings beyond the standard quadratic action subject to a quadratic constraint. A zero of the beta function, both in the bosonic and supersymmetric cases, appears to arise from competition between one-loop and higher loop effects. A string vacuum based on such a fixed point would have string scale curvature. The evidence presented is based on fixed-order calculations carried to four loops (corresponding to O(\alpha'^3) in the spacetime effective action) and on large D calculations carried to O(D^{-2}) (but to all orders in \alpha'). We discuss ways in which the evidence might be misleading, and we discuss some features of the putative fixed point, including the central charge and an operator of negative dimension. We speculate that an approximately AdS_5 version of this construction may provide a holographic dual for pure Yang-Mills theory, and that quotients of an AdS_3 version might stand in for Calabi-Yau manifolds in compactifications to four dimensions.Comment: 44 pages, 4 figures. v2: references adde
    • …
    corecore