4 research outputs found

    Characterizing and optimizing qubit coherence based on SQUID geometry

    Full text link
    The dominant source of decoherence in contemporary frequency-tunable superconducting qubits is 1/ff flux noise. To understand its origin and find ways to minimize its impact, we systematically study flux noise amplitudes in more than 50 flux qubits with varied SQUID geometry parameters and compare our results to a microscopic model of magnetic spin defects located at the interfaces surrounding the SQUID loops. Our data are in agreement with an extension of the previously proposed model, based on numerical simulations of the current distribution in the investigated SQUIDs. Our results and detailed model provide a guide for minimizing the flux noise susceptibility in future circuits.Comment: 14 pages, 6 figure

    Disorder, Geometric Frustration and the Dipolar Interaction in Rare-Earth Magnets

    Get PDF
    This thesis will present research that studies the role of disorder, geometric frustration and the long range dipolar interaction on the collective behaviour of several insulating, rare earth magnets. Experiments were performed at low temperatures to measure the specific heat and magnetic susceptibility of several materials. Susceptibility was measured with a SQUID magnetometer that has been designed and constructed primarily for the study of slow dynamics in glassy systems. Specifically, this thesis will discuss three distinct topics. The first is the series of materials LiHo(x)Y(1-x)F(4), which are manifestations of the dilute, dipolar coupled Ising model. The low-x portion of the phase diagram has become a rather contentious issue in recent years with both theoretical and experimental groups disagreeing on the existence of a spin glass freezing transition and one experimental group arguing for the existence of an exotic "antiglass'' or spin liquid state resulting from quantum entanglement at x=0.045. We present specific heat and dynamical susceptibility measurements on four stoichiometries in this series: x = 0.018, 0.045, 0.080 and 0.012. No evidence of an unusual antiglass state is observed. Instead, our results show evidence, at all dilution levels studied, of a spin glass freezing transition. Interpretation of experimental data is found to be complicated by the anomalously slow dynamics in these materials. The relaxation time scales are found to increase as the concentration of Ho(3+) ions is reduced, an effect which can be attributed to single-ion physics and the importance of the nuclear hyperfine coupling in this system. A second set of materials studied here is a series of several Gd garnet materials, the most famous of which is Gd(3)Ga(5)O(12) (GGG), a material previously argued to be a disorder-free spin glass. Our specific heat experiments reproduce previous experiments on GGG and show that the homologous Gd garnets Gd(3)Te(2)Li(3)O(12) and Ga(3)Al(5)O(12) do not share the same glassy physics but exhibit sharp ordering features. By experimenting with the introduction of random site dilution, it is concluded that a 1-2% off-stoichiometry inherent in GGG is likely a special kind of disorder that is particularly effective in inducing random frustration and the formation of a spin glass. Finally, specific heat measurements on the pyrochlore antiferromagnet Gd(2)Sn(2)O(7) (GSO) are presented. While GSO has generally been found to be a well behaved and well understood model magnet, with long range order developing at around 1 K, like many other geometrically frustrated magnets, it has been discovered to possess persistent spin dynamics down to very low temperatures as measured by μSR and Mössbauer spectroscopy. Measurement of the low temperature limit of the specific heat when compared with linear spin-wave theory, however, presents a consistent picture of gapped magnon excitations that freeze out at low temperatures and make the existence of the proposed dynamic ground state unlikely

    Superconducting single photon detectors for quantum information processing

    Get PDF
    Single photon detectors are a vital part of many emerging technologies which harness the quantum properties of light to benefit the fields of communication, computation and sensing. Superconducting nanowire single photon detectors (SNSPDs) offer high detection efficiency, low dark count rates, low timing jitter, and infrared sensitivity that are required by the most demanding single photon counting applications. This thesis presents SNSPDs fabricated and tested at the University of Glasgow that are integrated with optical structures which enable enhanced detection efficiency and integration with waveguide circuit technology. The monolithic integration of waveguide circuit components presents a route towards realisation of an optical quantum information processor that has the stability and scalability to perform the demanding tasks of quantum computation. A novel process is introduced for incorporating superconducting detectors with single mode gallium arsenide waveguides and quantum dot single photon sources. Together these elements would enable the generation of quantum states of light which could be manipulated and detected on a single chip. Detectors are patterned in NbTiN thin superconducting films on to suspended nanobeam waveguides with better than 50 nm alignment accuracy. Low temperature electrical and optical testing confirms the detectors’ single photon sensitivity under direct illumination as well as to waveguide coupled light. Measured detectors were found to have internal registering efficiencies of 6.8 ± 2.4%. Enhancing absorption of photons into thin superconducting films is vital to the creation of high efficiency superconducting single photon detectors. Fabricating an SNSPD on a dielectric mirror creates a partial cavity that can be tailored to enhance detection of light at specific wavelengths. Devices have been fabricated and tested in this thesis with enhanced detection efficiency at infrared and visible wavelengths for quantum cryptography, remote sensing and life science applications. Detectors fabricated in NbTiN on GaAs/AlGaAs Bragg mirrors exhibited a system detection efficiency of 1.5% at 1500 nm wavelength for the best device measured. SNSPDs were also fabricated in NbN on aperiodic dielectric mirrors with a range of different bandwidths. A peak system detection efficiency of 82.7% at 808 nm wavelength was recorded
    corecore