33,765 research outputs found

    Space Efficiency of Propositional Knowledge Representation Formalisms

    Full text link
    We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class

    Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes.

    Get PDF
    In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L? Q2: Do there exist complete problems for a given promise class C? For concrete languages L (such as TAUT or SAT) and concrete promise classes C (such as NP∩coNP, UP, BPP, disjoint NP-pairs etc.), these ques-tions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new character-izations for Q1 and Q2 that apply to almost all promise classes C and languages L, thus creating a unifying framework for the study of these practically relevant questions. While questions Q1 and Q2 are left open by our results, we show that they receive affirmative answers when a small amount on advice is avail-able in the underlying machine model. This continues a recent line of research on proof systems with advice started by Cook and Kraj́ıček [6]

    The Complexity of Computing Optimal Assignments of Generalized Propositional Formulae

    Full text link
    We consider the problems of finding the lexicographically minimal (or maximal) satisfying assignment of propositional formulae for different restricted formula classes. It turns out that for each class from our framework, the above problem is either polynomial time solvable or complete for OptP. We also consider the problem of deciding if in the optimal assignment the largest variable gets value 1. We show that this problem is either in P or P^NP complete.Comment: 17 pages, 1 figur

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    The Complexity of Power-Index Comparison

    Get PDF
    We study the complexity of the following problem: Given two weighted voting games G' and G'' that each contain a player p, in which of these games is p's power index value higher? We study this problem with respect to both the Shapley-Shubik power index [SS54] and the Banzhaf power index [Ban65,DS79]. Our main result is that for both of these power indices the problem is complete for probabilistic polynomial time (i.e., is PP-complete). We apply our results to partially resolve some recently proposed problems regarding the complexity of weighted voting games. We also study the complexity of the raw Shapley-Shubik power index. Deng and Papadimitriou [DP94] showed that the raw Shapley-Shubik power index is #P-metric-complete. We strengthen this by showing that the raw Shapley-Shubik power index is many-one complete for #P. And our strengthening cannot possibly be further improved to parsimonious completeness, since we observe that, in contrast with the raw Banzhaf power index, the raw Shapley-Shubik power index is not #P-parsimonious-complete.Comment: 12 page

    Boolean Operations, Joins, and the Extended Low Hierarchy

    Get PDF
    We prove that the join of two sets may actually fall into a lower level of the extended low hierarchy than either of the sets. In particular, there exist sets that are not in the second level of the extended low hierarchy, EL_2, yet their join is in EL_2. That is, in terms of extended lowness, the join operator can lower complexity. Since in a strong intuitive sense the join does not lower complexity, our result suggests that the extended low hierarchy is unnatural as a complexity measure. We also study the closure properties of EL_ and prove that EL_2 is not closed under certain Boolean operations. To this end, we establish the first known (and optimal) EL_2 lower bounds for certain notions generalizing Selman's P-selectivity, which may be regarded as an interesting result in its own right.Comment: 12 page
    corecore