1,120 research outputs found

    Introduction to fMRI: experimental design and data analysis

    Get PDF
    This provides an introduction to functional MRI, experimental design and data analysis procedures using statistical parametric mapping approach

    Detecting language activations with functional magnetic resonance imaging

    Get PDF
    This thesis investigates a number of factors that affect sensitivity to language activations in functional Magnetic Resonance Imaging (fMRI). In the first part, I investigate the impact of experimental design parameters on the ability to detect language activations. These parameters include stimulus rate, stimulus duration, stimulus amplitude, epoch length and stimulus ordering. Crucially, they may affect sensitivity in multiple ways that include neurophysiological, efficiency-mediated and BOLD saturation effects. I illustrate and discuss these effects by presenting biophysical simulations and fMRI studies of single word and pseudoword reading. In addition, I focus on the differential effects of the above parameters in Positron Emission Tomography and fMRI studies. In the second part, I investigate the impact of the analysis used to estimate effects of interest from the data. I compare event-related and epoch analyses and show that, even in the context of blocked design fMRI, an event-related model may provide greater sensitivity than an epoch model. I then address the notion that experimentally-induced effects may be detected not only as task-dependent changes in regional responses but also as changes in connectivity amongst functionally connected regions. These two complementary approaches are motivated by two fundamental principles of brain organisation: functional specialisation and functional integration. I present two fMRI studies investigating the neural correlates of reading words and pseudowords in terms of functional specialisation and functional integration. Furthermore, in both studies I address the issue of inter-subject variability, which may be a critical determinant of sensitivity. Men

    Optimizing Experimental Design for Comparing Models of Brain Function

    Get PDF
    This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work

    The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.

    Get PDF
    The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus

    Cognitive effort modulates connectivity between dorsal anterior cingulate cortex and task-relevant cortical areas

    Get PDF
    Investment of cognitive effort is required in everyday life and has received ample attention in recent neurocognitive frameworks. The neural mechanism of effort investment is thought to be structured hierarchically, with dorsal anterior cingulate cortex (dACC) at the highest level, recruiting task-specific upstream areas. In the current fMRI study, we tested whether dACC is generally active when effort demand is high across tasks with different stimuli, and whether connectivity between dACC and task-specific areas is increased depending on the task requirements and effort level at hand. For that purpose, a perceptual detection task was administered that required male and female human participants to detect either a face or a house in a noisy image. Effort demand was manipulated by adding little (low effort) or much (high effort) noise to the images. Results showed a network of dACC, anterior insula (AI), and intraparietal sulcus (IPS) to be more active when effort demand was high, independent of the performed task (face or house detection). Importantly, effort demand modulated functional connectivity between dACC and face-responsive or house-responsive perceptual areas, depending on the task at hand. This shows that dACC, AI, and IPS constitute a general effort-responsive network and suggests that the neural implementation of cognitive effort involves dACC-initiated sensitization of task-relevant areas

    Direct electrophysiological evidence for the maintenance of retrieval orientations and the role of cognitive control

    Get PDF
    Retrieval orientations are memory states that bias retrieval towards specific memory contents. Many neuroimaging studies have examined the influence of retrieval orientations on stimulus processing, but very little direct evidence exists regarding the ongoing maintenance of orientations themselves. Participants completed two memory tasks with different retrieval goals. ERPs were time-locked to a pre-stimulus fixation asterisk and contrasted according to retrieval goals. Prestimulus ERPs elicited during the two retrieval tasks diverged at frontal electrode sites. These differences onset early and were sustained throughout the fixation-stimulus interval. The functional and spatiotemporal characteristics of this ERP effect comprise the first direct electrophysiological evidence of the ongoing maintenance of retrieval orientations throughout a task. Moreover, this effect was eliminated in participants who performed a stroop task prior to the memory tests, indicating that reserves of cognitive control play an important role in the maintenance of retrieval orientations throughout memory tasks

    False memory and aging: an event-related potential study

    Get PDF
    The DRM paradigm is used to examine false memory—when a list of highly associated words (e.g. SEWING, THREAD, THIMBLE) is studied, a nonpresented but associated false target (e.g. NEEDLE) is often confidently (but incorrectly) identified as having been studied. An ERP study was conducted with a sample of young and older adults to examine age differences in false memory and neurological distinctions between true and false recognition. DRM words were presented in a lateralized fashion, with the prediction that a contralateral sensory signature would be present for true but not false memories. ERP data was largely inconclusive, but does suggest that processing during the DRM paradigm may largely be carried out in the left hemisphere.Paul Verhaeghen - Faculty Mentor ; Audrey Duarte - Committee Member/Second Reade

    The role of the left head of caudate in suppressing irrelevant words

    Get PDF
    Suppressing irrelevant words is essential to successful speech production and is expected to involve general control mechanisms that reduce interference from task-unrelated processing. To investigate the neural mechanisms that suppress visual word interference, we used fMRI and a Stroop task, using a block design with an event-related analysis. Participants indicated with a finger press whether a visual stimulus was colored pink or blue. The stimulus was either the written word "BLUE," the written word "PINK," or a string of four Xs, with word interference introduced when the meaning of the word and its color were "incongruent" (e.g., BLUE in pink hue) relative to congruent (e.g., BLUE in blue) or neutral (e.g., XXXX in pink). The participants also made color decisions in the presence of spatial interference rather than word interference (i.e., the Simon task). By blocking incongruent, congruent, and neutral trials, we identified activation related to the mechanisms that suppress interference as that which was greater at the end relative to the start of incongruency. This highlighted the role of the left head of caudate in the control of word interference but not spatial interference. The response in the left head of caudate contrasted to bilateral inferior frontal activation that was greater at the start than at the end of incongruency, and to the dorsal anterior cingulate gyrus which responded to a change in the motor response. Our study therefore provides novel insights into the role of the left head of caudate in the mechanisms that suppress word interference
    • …
    corecore