2,078 research outputs found

    Comparing Different Nonsmooth Minimization Methods and Software

    Get PDF

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    Certificates of infeasibility via nonsmooth optimization

    Get PDF
    An important aspect in the solution process of constraint satisfaction problems is to identify exclusion boxes which are boxes that do not contain feasible points. This paper presents a certificate of infeasibility for finding such boxes by solving a linearly constrained nonsmooth optimization problem. Furthermore, the constructed certificate can be used to enlarge an exclusion box by solving a nonlinearly constrained nonsmooth optimization problem.Comment: arXiv admin note: substantial text overlap with arXiv:1506.0802

    Optimizing Omega

    Get PDF
    "The original publication is available at www.springerlink.com " Copyright Springer. DOI: 10.1007/s10898-008-9396-5This paper considers the Omega function, proposed by Cascon, Keating & Shadwick as a performance measure for comparing financial assets. We discuss the use of Omega as a basis for portfolio selection. We show that the problem of choosing portfolio weights in order to maximize Omega typically has many local solutions and we describe some preliminary computational experience of finding the global optimum using a NAG library implementation of the Huyer & Neumaier MCS method.Peer reviewe
    • …
    corecore