9,976 research outputs found

    Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers

    Get PDF
    In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face regions. The region classifiers use PCA-LDA for feature extraction and the likelihood ratio as a matching score. Fusion is realised using straightforward majority voting for the identification scenario. For verification, a voting approach is used as well and the decision is defined by comparing the number of votes to a threshold. Using the proposed registration method combined with a classifier consisting of 60 fused region classifiers we obtain a 99.0% identification rate on the all vs first identification test of the FRGC v2 data. A verification rate of 94.6% at FAR=0.1% was obtained for the all vs all verification test on the FRGC v2 data using fusion of 120 region classifiers. The first is the highest reported performance and the second is in the top-5 of best performing systems on these tests. In addition, our approach is much faster than other methods, taking only 2.5 seconds per image for registration and less than 0.1 ms per comparison. Because we apply feature extraction using PCA and LDA, the resulting template size is also very small: 6 kB for 60 region classifiers

    Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow

    Get PDF
    We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented manually by experts, is developed to generate pixel-wise apparent flow between two time points of a 2D+t cine MRI image sequence. Combining the apparent flow maps and cardiac segmentation masks, we obtain a local apparent flow corresponding to the 2D motion of myocardium and ventricular cavities. This leads to the generation of time series of the radius and thickness of myocardial segments to represent cardiac motion. These time series of motion features are reliable and explainable characteristics of pathological cardiac motion. Furthermore, they are combined with shape-related features to classify cardiac pathologies. Using only nine feature values as input, we propose an explainable, simple and flexible model for pathology classification. On ACDC training set and testing set, the model achieves 95% and 94% respectively as classification accuracy. Its performance is hence comparable to that of the state-of-the-art. Comparison with various other models is performed to outline some advantages of our model

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Assigning UPDRS Scores in the Leg Agility Task of Parkinsonians: Can It Be Done through BSN-based Kinematic Variables?

    Full text link
    In this paper, by characterizing the Leg Agility (LA) task, which contributes to the evaluation of the degree of severity of the Parkinson's Disease (PD), through kinematic variables (including the angular amplitude and speed of thighs' motion), we investigate the link between these variables and Unified Parkinson's Disease Rating Scale (UPDRS) scores. Our investigation relies on the use of a few body-worn wireless inertial nodes and represents a first step in the design of a portable system, amenable to be integrated in Internet of Things (IoT) scenarios, for automatic detection of the degree of severity (in terms of UPDRS score) of PD. The experimental investigation is carried out considering 24 PD patients.Comment: 10 page

    PANDA: Pose Aligned Networks for Deep Attribute Modeling

    Full text link
    We propose a method for inferring human attributes (such as gender, hair style, clothes style, expression, action) from images of people under large variation of viewpoint, pose, appearance, articulation and occlusion. Convolutional Neural Nets (CNN) have been shown to perform very well on large scale object recognition problems. In the context of attribute classification, however, the signal is often subtle and it may cover only a small part of the image, while the image is dominated by the effects of pose and viewpoint. Discounting for pose variation would require training on very large labeled datasets which are not presently available. Part-based models, such as poselets and DPM have been shown to perform well for this problem but they are limited by shallow low-level features. We propose a new method which combines part-based models and deep learning by training pose-normalized CNNs. We show substantial improvement vs. state-of-the-art methods on challenging attribute classification tasks in unconstrained settings. Experiments confirm that our method outperforms both the best part-based methods on this problem and conventional CNNs trained on the full bounding box of the person.Comment: 8 page
    • ā€¦
    corecore