489 research outputs found

    Performance evaluation of warehouses with automated storage and retrieval technologies.

    Get PDF
    In this dissertation, we study the performance evaluation of two automated warehouse material handling (MH) technologies - automated storage/retrieval system (AS/RS) and autonomous vehicle storage/retrieval system (AVS/RS). AS/RS is a traditional automated warehouse MH technology and has been used for more than five decades. AVS/RS is a relatively new automated warehouse MH technology and an alternative to AS/RS. There are two possible configurations of AVS/RS: AVS/RS with tier-captive vehicles and AVS/RS with tier-to-tier vehicles. We model the AS/RS and both configurations of the AVS/RS as queueing networks. We analyze and develop approximate algorithms for these network models and use them to estimate performance of the two automated warehouse MH technologies. Chapter 2 contains two parts. The first part is a brief review of existing papers about AS/RS and AVS/RS. The second part is a methodological review of queueing network theory, which serves as a building block for our study. In Chapter 3, we model AS/RSs and AVS/RSs with tier-captive vehicles as open queueing networks (OQNs). We show how to analyze OQNs and estimate related performance measures. We then apply an existing OQN analyzer to compare the two MH technologies and answer various design questions. In Chapter 4 and Chapter 5, we present some efficient algorithms to solve SOQN. We show how to model AVS/RSs with tier-to-tier vehicles as SOQNs and evaluate performance of these designs in Chapter 6. AVS/RS is a relatively new automated warehouse design technology. Hence, there are few efficient analytical tools to evaluate performance measures of this technology. We developed some efficient algorithms based on SOQN to quickly and effectively evaluate performance of AVS/RS. Additionally, we present a tool that helps a warehouse designer during the concepting stage to determine the type of MH technology to use, analyze numerous alternate warehouse configurations and select one of these for final implementation

    An efficient deadlock prevention approach for service oriented transaction processing

    Get PDF
    Transaction processing can guarantee the reliability of business applications. Locking resources is widely used in distributed transaction management (e.g., two phase commit, 2PC) to keep the system consistent. The locking mechanism, however, potentially results in various deadlocks. In service oriented architecture (SOA), the deadlock problem becomes even worse because multiple (sub)transactions try to lock shared resources in the unexpectable way due to the more randomicity of transaction requests, which has not been solved by existing research results. In this paper, we investigate how to prevent local deadlocks, caused by the resource competition among multiple sub-transactions of a global transaction, and global deadlocks from the competition among different global transactions. We propose a replication based approach to avoid the local deadlocks, and a timestamp based approach to significantly mitigate the global deadlocks. A general algorithm is designed for both local and global deadlock prevention. The experimental results demonstrate the effectiveness and efficiency of our deadlock prevention approach. Further, it is also proved that our approach provides higher system performance than traditional resource allocation schemes. © 2011 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Resource Management in Multi-Access Edge Computing (MEC)

    Get PDF
    This PhD thesis investigates the effective ways of managing the resources of a Multi-Access Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. The main characteristics of MEC include distributed nature, proximity to users, and high availability. Based on these key features, solutions have been proposed for effective resource management. In this research, two aspects of resource management in MEC have been addressed. They are the computational resource and the caching resource which corresponds to the services provided by the MEC. MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC would support latency-critical user applications such as driverless cars and e-health. These applications will depend on resources and services provided by the MEC. However, MEC has limited computational and storage resources compared to the cloud. Therefore, it is important to ensure a reliable MEC network communication during resource provisioning by eradicating the chances of deadlock. Deadlock may occur due to a huge number of devices contending for a limited amount of resources if adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve a highly reliable and readily available system to support latency-critical applications. In this research, a deadlock avoidance resource provisioning algorithm has been proposed for industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. The proposed scheme incorporates Banker’s resource-request algorithm using Software Defined Networking (SDN) to reduce communication overhead. Simulation and experimental results have shown that system deadlock can be prevented by applying the proposed algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC platforms. Additionally, this research explores the use of MEC as a caching platform as it is proclaimed as a key technology for reducing service processing delays in 5G networks. Caching on MEC decreases service latency and improve data content access by allowing direct content delivery through the edge without fetching data from the remote server. Caching on MEC is also deemed as an effective approach that guarantees more reachability due to proximity to endusers. In this regard, a novel hybrid content caching algorithm has been proposed for MEC platforms to increase their caching efficiency. The proposed algorithm is a unification of a modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is employed to predict future request references for Belady’s algorithm. Experimental results show that the proposed algorithm obtains 4% more cache hits due to its selective caching approach when compared with case study algorithms. Results also show that the use of a cooperative algorithm can improve the total cache hits up to 80%. Furthermore, this thesis has also explored another predictive caching scheme to further improve caching efficiency. The motivation was to investigate another predictive caching approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) caching framework has been proposed as a result which consists of three schemes. Each of the schemes addresses a particular problem. The proactive predictive scheme has been proposed to address the problem of continuous change in cache popularity trends. The collaborative scheme addresses the problem of cache redundancy in the collaborative space. Finally, the replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation experiment has shown that the replacement scheme achieves 3% more cache hits than existing replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and compared with an existing contemporary predictive algorithm. Results show that PCR performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead

    A reinforcement learning approach for transaction scheduling in a shuttle-based storage and retrieval system

    Get PDF
    With recent Industry 4.0 developments, companies tend to automate their industries. Warehousing companies also take part in this trend. A shuttle-based storage and retrieval system (SBS/RS) is an automated storage and retrieval system technology experiencing recent drastic market growth. This technology is mostly utilized in large distribution centers processing mini-loads. With the recent increase in e-commerce practices, fast delivery requirements with low volume orders have increased. SBS/RS provides ultrahigh-speed load handling due to having an excess amount of shuttles in the system. However, not only the physical design of an automated warehousing technology but also the design of operational system policies would help with fast handling targets. In this work, in an effort to increase the performance of an SBS/RS, we apply a machine learning (ML) (i.e., Q-learning) approach on a newly proposed tier-to-tier SBS/RS design, redesigned from a traditional tier-captive SBS/RS. The novelty of this paper is twofold: First, we propose a novel SBS/RS design where shuttles can travel between tiers in the system; second, due to the complexity of operation of shuttles in that newly proposed design, we implement an ML-based algorithm for transaction selection in that system. The ML-based solution is compared with traditional scheduling approaches: first-in-first-out and shortest process time (i.e., travel) scheduling rules. The results indicate that in most cases, the Q-learning approach performs better than the two static scheduling approaches

    A flexible control system for flexible manufacturing systems

    Get PDF
    A flexible workcell controller has been developed using a three level control hierarchy (workcell, workstation, equipment). The cell controller is automatically generated from a model input by the user. The model consists of three sets of graphs. One set of graphs describes the process plans of the parts produced by the manufacturing system, one set describes movements into, out of and within workstations, and the third set describes movements of parts/transporters between workstations. The controller uses an event driven Petri net to maintain state information and to communicate with lower level controllers. The control logic is contained in an artificial neural network. The Petri net state information is used as the input to the neural net and messages that are Petri net events are output from the neural net. A genetic algorithm was used to search over alternative operation choices to find a "good" solution. The system was fully implemented and several test cases are described

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda

    Get PDF
    Autonomous mobile robots (AMR) are currently being introduced in many intralogistics operations, like manufacturing, warehousing, cross-docks, terminals, and hospitals. Their advanced hardware and control software allow autonomous operations in dynamic environments. Compared to an automated guided vehicle (AGV) system in which a central unit takes control of scheduling, routing, and dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with other resources like machines and systems and thus decentralize the decision-making process. Decentralized decision-making allows the system to react dynamically to changes in the system state and environment. These developments have influenced the traditional methods and decision-making processes for planning and control. This study identifies and classifies research related to the planning and control of AMRs in intralogistics. We provide an extended literature review that highlights how AMR technological advances affect planning and control decisions. We contribute to the literature by introducing an AMR planning and control framework t

    A reinforcement learning approach for transaction scheduling in a shuttle-based storage and retrieval system

    Get PDF
    With recent Industry 4.0 developments, companies tend to automate their industries. Warehousing companies also take part in this trend. A shuttle-based storage and retrieval system (SBS/RS) is an automated storage and retrieval system technology experiencing recent drastic market growth. This technology is mostly utilized in large distribution centers processing mini-loads. With the recent increase in e-commerce practices, fast delivery requirements with low volume orders have increased. SBS/RS provides ultrahigh-speed load handling due to having an excess amount of shuttles in the system. However, not only the physical design of an automated warehousing technology but also the design of operational system policies would help with fast handling targets. In this work, in an effort to increase the performance of an SBS/RS, we apply a machine learning (ML) (i.e., Q-learning) approach on a newly proposed tier-to-tier SBS/RS design, redesigned from a traditional tier-captive SBS/RS. The novelty of this paper is twofold: First, we propose a novel SBS/RS design where shuttles can travel between tiers in the system; second, due to the complexity of operation of shuttles in that newly proposed design, we implement an ML-based algorithm for transaction selection in that system. The ML-based solution is compared with traditional scheduling approaches: first-in-first-out and shortest process time (i.e., travel) scheduling rules. The results indicate that in most cases, the Q-learning approach performs better than the two static scheduling approaches

    Hybrid multiobjective genetic algorithm for integrated dynamic scheduling and routing of jobs and automated guided vehicles in flexible manufacturing systems

    Get PDF
    The dynamic continues trend of adoption and improvement inventive automated technologies is one of the main competing strategies of many manufacturing industries. Effective integrated operations management of Automated Guided Vehicle (AGV) system in Flexible Manufacturing System (FMS) environment results in the overall system performance. Routing AGVs was proved to be NP-Complete and scheduling of jobs was also proved to be NP hard problems. The running time of any deterministic algorithms solving these types of problems increases very rapidly with the size of the problem, which can be many years with any computational resources available presently. Solving AGVs conflict free routing, dispatching and simultaneous scheduling of the jobs and AGVs in FMS in an integrated manner is identified as the only means of safeguarding the feasibility of the solution to each sub-problem. Genetic algorithm has recorded of huge success in solving NP-Complete optimization problems with similar nature to this problem. The objectives of this research are to develop an algorithm for integrated scheduling and conflict-free routing of jobs and AGVs in FMS environment using a hybrid genetic algorithm, ensure the algorithm validity and improvement on the performance of the developed algorithm. The algorithm generates an integrated scheduling and detail paths route while optimizing makespan, AGV travel time, mean flow time and penalty cost due to jobs tardiness and delay as a result of conflict avoidance. The integrated algorithms use two genetic representations for the individual solution entire sub-chromosomes. The first three sub-chromosomes use random keys to represent jobs sequencing, operations allocation on machines and AGV dispatching, while the remaining sub-chromosomes are representing particular routing paths to be used by each dispatched AGV. The multiobjective fitness function use adaptive weight approach to assign weights to each objective for every generation based on objective improvement performance. Fuzzy expert system is used to control genetic operators using the overall population performance history. The algorithm used weight mapping crossover (WMX) and Insertion Mutation (IM) as genetic operators for sub-chromosomes represented with priority-based representation. Parameterized uniform crossover (PUX) and migration are used as genetic operators for sub-chromosomes represented using random-key based encoding. Computational experiments were conducted on the developed algorithm coded in Matlab to test the effectiveness of the algorithm. First scenario uses static consideration, the second scenario uses dynamic consideration with machine failure recovery. Sensitivity analysis and convergence analysis was also conducted. The results show the effectiveness of the proposed algorithm in generating the integrated scheduling, AGVs dispatching and conflict-free routing. The comparison of the result of the developed integrated algorithm using two benchmark FMS scheduling algorithms datasets is conducted. The comparison shows the improvement of 1.1% and 16% in makespan of the first and the second benchmark production dataset respectively. The major novelty of the algorithm is an integrated approach to the individual sub-problems which ensures the legality, and feasibility of all solutions generated for various sub-problems which in the literature are considered separately

    Data bases and data base systems related to NASA's aerospace program. A bibliography with indexes

    Get PDF
    This bibliography lists 1778 reports, articles, and other documents introduced into the NASA scientific and technical information system, 1975 through 1980
    corecore