17,884 research outputs found

    An empirical biometric-based study for user identification from different roles in the online game League of Legends

    Get PDF
    © 2017 CEUR-WS. All rights reserved. The popularity of computer games has grown exponentially in the last few years. In some games, players can choose to play with different characters from a pre-defined list, exercising distinct roles in each match. Although such games were created to promote competition and promote self-improvement, there are several recurrent issues. One that has received the least amount of attention is the problem of "account sharing" so far is when a player pays more experienced players to progressing in the game. The companies running those games tend to punish this behaviour, but this specific case is hard to identify. The aim of this study is to use a database of mouse and keystroke dynamics biometric data of League of Legends players as a case study to understand the specific characteristics a player will keep (or not) when playing different roles and distinct characters

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Investigating the impact of combining handwritten signature and keyboard keystroke dynamics for gender prediction

    Get PDF
    © 2019 IEEE. The use of soft-biometric data as an auxiliary tool on user identification is already well known. Gender, handorientation and emotional state are some examples which can be called soft-biometrics. These soft-biometric data can be predicted directly from the biometric templates. It is very common to find researches using physiological modalities for soft-biometric prediction, but behavioural biometric is often not well explored for this context. Among the behavioural biometric modalities, keystroke dynamics and handwriting signature have been widely explored for user identification, including some soft-biometric predictions. However, in these modalities, the soft-biometric prediction is usually done in an individual way. In order to fill this space, this study aims to investigate whether the combination of those two biometric modalities can impact the performance of a soft-biometric data, gender prediction. The main aim is to assess the impact of combining data from two different biometric sources in gender prediction. Our findings indicated gains in terms of performance for gender prediction when combining these two biometric modalities, when compared to the individual ones

    Dynamic Template Adjustment in Continuous Keystroke Dynamics

    Get PDF
    Dynamika úhozů kláves je jednou z behaviorálních biometrických charakteristik, kterou je možné použít pro průběžnou autentizaci uživatelů. Vzhledem k tomu, že styl psaní na klávesnici se v čase mění, je potřeba rovněž upravovat biometrickou šablonu. Tímto problémem se dosud, alespoň pokud je autorovi známo, žádná studie nezabývala. Tato diplomová práce se pokouší tuto mezeru zaplnit. S pomocí dat o časování úhozů od 22 dobrovolníků bylo otestováno několik technik klasifikace, zda je možné je upravit na online klasifikátory, zdokonalující se bez učitele. Výrazné zlepšení v rozpoznání útočníka bylo zaznamenáno u jednotřídového statistického klasifikátoru založeného na normované Euklidovské vzdálenosti, v průměru o 23,7 % proti původní verzi bez adaptace, zlepšení však bylo pozorováno u všech testovacích sad. Změna míry rozpoznání správného uživatele se oproti tomu různila, avšak stále zůstávala na přijatelných hodnotách.Keystroke dynamics is one of behavioural biometric characteristics which can be employed for continuous user authentication. As typing style on a keyboard changes in time, the template adapting is necessary. No study covered this topic yet, as far as the author knows. This master thesis tries to fill this gap. Several classification techniques were exercised with help of keystroke data from 22 volunteers in order to test if they can be improved to unsupervised online classifiers. A significant improvement in impostor recognition was noted at one-class statistical classifier based on normed Euclidean distance. The impostor could make 23.7 % actions less than in offline version on average but the improvement was obseved with all test sets. In contrary, the genuine user recognition varied from user to user but it still kept at acceptable values.

    PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration

    Get PDF
    An increasing amount of studies integrate mRNA sequencing data into MS-based proteomics to complement the translation product search space. However, several factors, including extensive regulation of mRNA translation and the need for three- or six-frame-translation, impede the use of mRNA-seq data for the construction of a protein sequence search database. With that in mind, we developed the PROTEOFORMER tool that automatically processes data of the recently developed ribosome profiling method (sequencing of ribosome-protected mRNA fragments), resulting in genome-wide visualization of ribosome occupancy. Our tool also includes a translation initiation site calling algorithm allowing the delineation of the open reading frames (ORFs) of all translation products. A complete protein synthesis-based sequence database can thus be compiled for mass spectrometry-based identification. This approach increases the overall protein identification rates with 3% and 11% (improved and new identifications) for human and mouse, respectively, and enables proteome-wide detection of 5'-extended proteoforms, upstream ORF translation and near-cognate translation start sites. The PROTEOFORMER tool is available as a stand-alone pipeline and has been implemented in the galaxy framework for ease of use
    corecore