1,894 research outputs found

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image

    Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means.

    No full text
    International audienceThe x-ray exposure to patients has become a major concern in computed tomography (CT) and minimizing the radiation exposure has been one of the major efforts in the CT field. Due to plenty high-attenuation tissues in the human chest, under low-dose scan protocols, thoracic low-dose CT (LDCT) images tend to be severely degraded by excessive mottled noise and non-stationary streak artifacts. Their removal is rather a challenging task because the streak artifacts with directional prominence are often hard to discriminate from the attenuation information of normal tissues. This paper describes a two-step processing scheme called 'artifact suppressed large-scale nonlocal means' for suppressing both noise and artifacts in thoracic LDCT images. Specific scale and direction properties were exploited to discriminate the noise and artifacts from image structures. Parallel implementation has been introduced to speed up the whole processing by more than 100 times. Phantom and patient CT images were both acquired for evaluation purpose. Comparative qualitative and quantitative analyses were both performed that allows conclusion on the efficacy of our method in improving thoracic LDCT data

    A Better Looking Brain: Image Pre-Processing Approaches for fMRI Data

    Get PDF
    Researchers in the field of functional neuroimaging have faced a long standing problem in pre-processing low spatial resolution data without losing meaningful details within. Commonly, the brain function is recorded by a technique known as echo-planar imaging that represents the measure of blood flow (BOLD signal) through a particular location in the brain as an array of intensity values changing over time. This approach to record a movie of blood flow in the brain is known as fMRI. The neural activity is then studied from the temporal correlation patterns existing within the fMRI time series. However, the resulting images are noisy and contain low spatial detail, thus making it imperative to pre-process them appropriately to derive meaningful activation patterns. Two of the several standard preprocessing steps employed just before the analysis stage are denoising and normalization. Fundamentally, it is difficult to perfectly remove noise from an image without making assumptions about signal and noise distributions. A convenient and commonly used alternative is to smooth the image with a Gaussian filter, but this method suffers from various obvious drawbacks, primarily loss of spatial detail. A greater challenge arises when we attempt to derive average activation patterns from fMRI images acquired from a group of individuals. The brain of one individual differs from others in a structural sense as well as in a functional sense. Commonly, the inter-individual differences in anatomical structures are compensated for by co-registering each subject\u27s data to a common normalization space, known as spatial normalization. However, there are no existing methods to compensate for the differences in functional organization of the brain. This work presents first steps towards data-driven robust algorithms for fMRI image denoising and multi-subject image normalization by utilizing inherent information within fMRI data. In addition, a new validation approach based on spatial shape of the activation regions is presented to quantify the effects of preprocessing and also as a tool to record the differences in activation patterns between individual subjects or within two groups such as healthy controls and patients with mental illness. Qualititative and quantitative results of the proposed framework compare favorably against existing and widely used model-driven approaches such as Gaussian smoothing and structure-based spatial normalization. This work is intended to provide neuroscience researchers tools to derive more meaningful activation patterns to accurately identify imaging biomarkers for various neurodevelopmental diseases and also maximize the specificity of a diagnosis

    A study of wavelet-based noise reduction techniques in mammograms

    Get PDF
    Breast cancer is one of the most common cancers and claims over one thousand lives every day. Breast cancer turns fatal only when diagnosed in late stages, but can be cured when diagnosed in its early stages. Over the last two decades, Digital Mammography has served the diagnosis of breast cancer. It is a very powerful aid for early detection of breast cancer. However, the images produced by mammography typically contain a great amount noise from the inherent characteristics of the imaging system and the radiation involved. Shot noise or quantum noise is the most significant noise which emerges as a result of uneven distribution of incident photons on the receptor. The X-ray dose given to patients must be minimized because of the risk of exposure. This noise present in mammograms manifests itself more when the dose of X-ray radiation is less and therefore needs to be treated before enhancing the mammogram for contrast and clarity. Several approaches have been taken to reduce the amount of noise in mammograms. This thesis presents a study of the wavelet-based techniques employed for noise reduction in mammograms --Abstract, page iii

    Denoising sparse images from GRAPPA using the nullspace method

    Get PDF
    To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with generalized autocalibrating partially parallel acquisitions (GRAPPA) alone, the DEnoising of Sparse Images from GRAPPA using the Nullspace method is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from uniformly undersampled k-space data using DEnoising of Sparse Images from GRAPPA using the Nullspace method are compared against reconstructions using existing methods in terms of difference images (a qualitative measure), peak-signal-to-noise ratio, and noise amplification (g-factors) as measured using the pseudo-multiple replica method. Effects of smoothing, including contrast loss, are studied in synthetic phantom data. In the experiments presented, the contrast loss and spatial resolution are competitive with existing methods. Results for several brain images demonstrate significant improvements over GRAPPA at high acceleration factors in denoising performance with limited blurring or smoothing artifacts. In addition, the measured g-factors suggest that DEnoising of Sparse Images from GRAPPA using the Nullspace method mitigates noise amplification better than both GRAPPA and L1 iterative self-consistent parallel imaging reconstruction (the latter limited here by uniform undersampling).National Science Foundation (U.S.) (CAREER Grant 0643836)National Institutes of Health (U.S.) (Grant NIH R01 EB007942)National Institutes of Health (U.S.) (Grant NIH R01 EB006847)National Center for Research Resources (U.S.) (Grant P41 RR014075)Siemens CorporationNational Science Foundation (U.S.). Graduate Research Fellowship Progra

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Automatic signal and image-based assessments of spinal cord injury and treatments.

    Get PDF
    Spinal cord injury (SCI) is one of the most common sources of motor disabilities in humans that often deeply impact the quality of life in individuals with severe and chronic SCI. In this dissertation, we have developed advanced engineering tools to address three distinct problems that researchers, clinicians and patients are facing in SCI research. Particularly, we have proposed a fully automated stochastic framework to quantify the effects of SCI on muscle size and adipose tissue distribution in skeletal muscles by volumetric segmentation of 3-D MRI scans in individuals with chronic SCI as well as non-disabled individuals. We also developed a novel framework for robust and automatic activation detection, feature extraction and visualization of the spinal cord epidural stimulation (scES) effects across a high number of scES parameters to build individualized-maps of muscle recruitment patterns of scES. Finally, in the last part of this dissertation, we introduced an EMG time-frequency analysis framework that implements EMG spectral analysis and machine learning tools to characterize EMG patterns resulting in independent or assisted standing enabled by scES, and identify the stimulation parameters that promote muscle activation patterns more effective for standing. The neurotechnological advancements proposed in this dissertation have greatly benefited SCI research by accelerating the efforts to quantify the effects of SCI on muscle size and functionality, expanding the knowledge regarding the neurophysiological mechanisms involved in re-enabling motor function with epidural stimulation and the selection of stimulation parameters and helping the patients with complete paralysis to achieve faster motor recovery
    • …
    corecore