94 research outputs found

    Designing for Shareable Interfaces in the Wild

    Get PDF
    Despite excitement about the potential of interactive tabletops to support collaborative work, there have been few empirical demonstrations of their effectiveness (Marshall et al., 2011). In particular, while lab-based studies have explored the effects of individual design features, there has been a dearth of studies evaluating the success of systems in the wild. For this technology to be of value, designers and systems builders require a better understanding of how to develop and evaluate tabletop applications to be deployed in real world settings. This dissertation reports on two systems designed through a process that incorporated ethnography-style observations, iterative design and in the wild evaluation. The first study focused on collaborative learning in a medical setting. To address the fact that visitors to a hospital emergency ward were leaving with an incomplete understanding of their diagnosis and treatment, a system was prototyped in a working Emergency Room (ER) with doctors and patients. The system was found to be helpful but adoption issues hampered its impact. The second study focused on a planning application for visitors to a tourist information centre. Issues and opportunities for a successful, contextually-fitted system were addressed and it was found to be effective in supporting group planning activities by novice users, in particular, facilitating users’ first experiences, providing effective signage and offering assistance to guide the user through the application. This dissertation contributes to understanding of multi-user systems through literature review of tabletop systems, collaborative tasks, design frameworks and evaluation of prototypes. Some support was found for the claim that tabletops are a useful technology for collaboration, and several issues were discussed. Contributions to understanding in this field are delivered through design guidelines, heuristics, frameworks, and recommendations, in addition to the two case studies to help guide future tabletop system creators

    Playful User Interfaces:Interfaces that Invite Social and Physical Interaction

    Get PDF

    The role of personal and shared displays in scripted collaborative learning

    Get PDF
    Over the last decades collaborative learning has gained immensely in importance and popularity due to its high potential. Unfortunately, learners rarely engage in effective learning activities unless they are provided with instructional support. In order to maximize learning outcomes it is therefore advisable to structure collaborative learning sessions. One way of doing this is using collaboration scripts, which define a sequence of activities to be carried out by the learners. The field of computer-supported collaborative learning (CSCL) produced a variety of collaboration scripts that proved to have positive effects on learning outcomes. These scripts provide detailed descriptions of successful learning scenarios and are therefore used as foundation for this thesis. In many cases computers are used to support collaborative learning. Traditional personal computers are often chosen for this purpose. However, during the last decades new technologies have emerged, which seem to be better suited for co-located collaboration than personal computers. Large interactive displays, for example, allow a number of people to work simultaneously on the same surface while being highly aware of the co-learners' actions. There are also multi-display environments that provide several workspaces, some of which may be shared, others may be personal. However, there is a lack of knowledge regarding the influence of different display types on group processes. For instance, it remains unclear in which cases shareable user interfaces should replace traditional single-user devices and when both personal and shared workspaces should be provided. This dissertation therefore explores the role of personal and shared workspaces in various situations in the area of collaborative learning. The research questions include the choice of technological devices, the seating arrangement as well as how user interfaces can be designed to guide learners. To investigate these questions a two-fold approach was chosen. First, a framework was developed, which supports the implementation of scripted collaborative learning applications. Second, different prototypes were implemented to explore the research questions. Each prototype is based on at least one collaboration script. The result is a set of studies, which contribute to answering the above-mentioned research questions. With regard to the choice of display environment the studies showed several reasons for integrating personal devices such as laptops. Pure tabletop applications with around-the-table seating arrangements whose benefits for collaboration are widely discussed in the relevant literature revealed severe drawbacks for text-based learning activities. The combination of laptops and an interactive wall display, on the other hand, turned out to be a suitable display environment for collaborative learning in several cases. In addition, the thesis presents several ways of designing the user interface in a way that guides learners through collaboration scripts

    Gestures and cooperation: considering non verbal communication in the design of interactive spaces

    Get PDF
    This dissertation explores the role of gestures in computer supported collaboration. People make extensive use of non-verbal forms of communication when they interact with each other in everyday life: of these, gestures are relatively easy to observe and quantify. However, the role of gestures in human computer interaction so far has been focused mainly on using conventional signs like visible commands, rather than on exploiting all nuances of such natural human skill. We propose a perspective on natural interaction that builds on recent advances in tangible interaction, embodiment and computer supported collaborative work. We consider the social and cognitive aspects of gestures and manipulations to support our claim of a primacy of tangible and multi-touch interfaces, and describe our experiences focused on assessing the suitability of such interface paradigms to traditional application scenarios. We describe our design and prototype of an interactive space for group-work, in which natural interfaces, such as tangible user interfaces and multi-touch screens, are deployed so as to foster and encourage collaboration. We show that these interfaces can lead to an improvement in performances and that such improvements appear related to an increase of the gestures performed by the users. We also describe the progress on the state of the art that have been necessary to implement such tools on commodity hardware and deploy them in a relatively uncontrolled environment. Finally, we discuss our findings and frame them in the broader context of embodied interaction, drawing useful implications for interactions design, with emphasis on how to enhance the activity of people in their workplace, home, school, etc. supported in their individual and collaborative tasks by natural interfaces

    Exploring the potential of physical visualizations

    Get PDF
    The goal of an external representation of abstract data is to provide insights and convey information about the structure of the underlying data, therefore helping people execute tasks and solve problems more effectively. Apart from the popular and well-studied digital visualization of abstract data there are other scarcely studied perceptual channels to represent data such as taste, sound or haptic. My thesis focuses on the latter and explores in which ways human knowledge and ability to sense and interact with the physical non-digital world can be used to enhance the way in which people analyze and explore abstract data. Emerging technological progress in digital fabrication allow an easy, fast and inexpensive production of physical objects. Machines such as laser cutters and 3D printers enable an accurate fabrication of physical visualizations with different form factors as well as materials. This creates, for the first time, the opportunity to study the potential of physical visualizations in a broad range. The thesis starts with the description of six prototypes of physical visualizations from static examples to digitally augmented variations to interactive artifacts. Based on these explorations, three promising areas of potential for physical visualizations were identified and investigated in more detail: perception & memorability, communication & collaboration, and motivation & self-reflection. The results of two studies in the area of information recall showed that participants who used a physical bar chart retained more information compared to the digital counterpart. Particularly facts about maximum and minimum values were be remembered more efficiently, when they were perceived from a physical visualization. Two explorative studies dealt with the potential of physical visualizations regarding communication and collaboration. The observations revealed the importance on the design and aesthetic of physical visualizations and indicated a great potential for their utilization by audiences with less interest in technology. The results also exposed the current limitations of physical visualizations, especially in contrast to their well-researched digital counterparts. In the area of motivation we present the design and evaluation of the Activity Sculptures project. We conducted a field study, in which we investigated physical visualizations of personal running activity. It was discovered that these sculptures generated curiosity and experimentation regarding the personal running behavior as well as evoked social dynamics such as discussions and competition. Based on the findings of the aforementioned studies this thesis concludes with two theoretical contributions on the design and potential of physical visualizations. On the one hand, it proposes a conceptual framework for material representations of personal data by describing a production and consumption lens. The goal is to encourage artists and designers working in the field of personal informatics to harness the interactive capabilities afforded by digital fabrication and the potential of material representations. On the other hand we give a first classification and performance rating of physical variables including 14 dimensions grouped into four categories. This complements the undertaking of providing researchers and designers with guidance and inspiration to uncover alternative strategies for representing data physically and building effective physical visualizations.Um aus abstrakten Daten konkrete Aussagen, komplexe Zusammenhänge oder überraschende Einsichten gewinnen zu können, müssen diese oftmals in eine, für den Menschen, anschauliche Form gebracht werden. Eine weitverbreitete und gut erforschte Möglichkeiten ist die Darstellung von Daten in visueller Form. Weniger erforschte Varianten sind das Verkörpern von Daten durch Geräusche, Gerüche oder physisch ertastbare Objekte und Formen. Diese Arbeit konzentriert sich auf die letztgenannte Variante und untersucht wie die menschlichen Fähigkeiten mit der physischenWelt zu interagieren dafür genutzt werden können, das Analysieren und Explorieren von Daten zu unterstützen. Der technische Fortschritt in der digitalen Fertigung vereinfacht und beschleunigt die Produktion von physischen Objekten und reduziert dabei deren Kosten. Lasercutter und 3D Drucker ermöglichen beispielsweise eine maßgerechte Fertigung physischer Visualisierungen verschiedenster Ausprägungen hinsichtlich Größe und Material. Dadurch ergibt sich zum ersten Mal die Gelegenheit, das Potenzial von physischen Visualisierungen in größerem Umfang zu erforschen. Der erste Teil der Arbeit skizziert insgesamt sechs Prototypen physischer Visualisierungen, wobei sowohl statische Beispiele beschrieben werden, als auch Exemplare die durch digital Inhalte erweitert werden oder dynamisch auf Interaktionen reagieren können. Basierend auf den Untersuchungen dieser Prototypen wurden drei vielversprechende Bereiche für das Potenzial physischer Visualisierungen ermittelt und genauer untersucht: Wahrnehmung & Einprägsamkeit, Kommunikation & Zusammenarbeit sowie Motivation & Selbstreflexion. Die Ergebnisse zweier Studien zur Wahrnehmung und Einprägsamkeit von Informationen zeigten, dass sich Teilnehmer mit einem physischen Balkendiagramm an deutlich mehr Informationen erinnern konnten, als Teilnehmer, die eine digitale Visualisierung nutzten. Insbesondere Fakten über Maximal- und Minimalwerte konnten besser im Gedächtnis behalten werden, wenn diese mit Hilfe einer physischen Visualisierung wahrgenommen wurden. Zwei explorative Studien untersuchten das Potenzial von physischen Visualisierungen im Bereich der Kommunikation mit Informationen sowie der Zusammenarbeit. Die Ergebnisse legten einerseits offen wie wichtig ein ausgereiftes Design und die Ästhetik von physischen Visualisierungen ist, deuteten anderseits aber auch darauf hin, dass Menschen mit geringem Interesse an neuen Technologien eine interessante Zielgruppe darstellen. Die Studien offenbarten allerdings auch die derzeitigen Grenzen von physischen Visualisierungen, insbesondere im Vergleich zu ihren gut erforschten digitalen Pendants. Im Bereich der Motivation und Selbstreflexion präsentieren wir die Entwicklung und Auswertung des Projekts Activity Sculptures. In einer Feldstudie über drei Wochen erforschten wir physische Visualisierungen, die persönliche Laufdaten repräsentieren. Unsere Beobachtungen und die Aussagen der Teilnehmer ließen darauf schließen, dass die Skulpturen Neugierde weckten und zum Experimentieren mit dem eigenen Laufverhalten einluden. Zudem konnten soziale Dynamiken entdeckt werden, die beispielsweise durch Diskussion aber auch Wettbewerbsgedanken zum Ausdruck kamen. Basierend auf den gewonnen Erkenntnissen durch die erwähnten Studien schließt diese Arbeit mit zwei theoretischen Beiträgen, hinsichtlich des Designs und des Potenzials von physischen Visualisierungen, ab. Zuerst wird ein konzeptionelles Framework vorgestellt, welches die Möglichkeiten und den Nutzen physischer Visualisierungen von persönlichen Daten veranschaulicht. Für Designer und Künstler kann dies zudem als Inspirationsquelle dienen, wie das Potenzial neuer Technologien, wie der digitalen Fabrikation, zur Darstellung persönlicher Daten in physischer Form genutzt werden kann. Des Weiteren wird eine initiale Klassifizierung von physischen Variablen vorgeschlagen mit insgesamt 14 Dimensionen, welche in vier Kategorien gruppiert sind. Damit vervollständigen wir unser Ziel, Forschern und Designern Inspiration und Orientierung zu bieten, um neuartige und effektvolle physische Visualisierungen zu erschaffen

    The Complementarity of Tangible and Paper Interfaces in Tabletop Environments for Collaborative Learning

    Get PDF
    The current trend in Human-Computer Interaction aims at bridging the gap between the digital and the real world, exploring novel ways to engage users with computational devices. Computers take new forms that are better integrated into our environment and can be embedded in buildings, furniture or clothes. Novel forms of interfaces take advantage of people's intuitive knowledge of everyday objects to offer more direct and natural interactions. Tangible User Interfaces (TUIs) allow users to interact with digital objects through tangible artifacts, building on their rich physical affordances. Paper User Interfaces (PUIs) add digital capabilities to paper documents, synchronizing for instance their content with their digital counterpart. Unique properties of paper are also used to create engaging and intuitive interfaces to computer applications. This dissertation is interested in the complementarity of tangible and paper interfaces in tabletop environments. We introduce the concept of Tangible and Paper Environments (TaPEs) where Interactive Paper Forms (IPFs), a particular type of PUIs based on the paper form metaphor, are used as a complementary interface to a TUI. We evaluate the potential of IPFs to overcome two main shortcomings of TUIs, in terms of scalability and pedagogy. The scalability issue comes from the limited expressiveness of task-specific physical artifacts, which offer rich physical affordances but limit the complexity of applications that can be controlled by a TUI. The pedagogy issue is raised by the lack of consistent evidence regarding the use of physical manipulatives in educational settings, which is one of the main application domain of TUIs. IPFs overcome the scalability issue by offering a set of generic interaction elements that allow TaPEs to cope with applications of any complexity. In a pedagogical setting, IPFs present learners with abstract representation which facilitate understanding by the embodied and concrete representations offered by tangible artifacts. A TaPE, the Tinker Environment, has been developed with two logistics teachers in the context of the Swiss vocational training system. It consists of a warehouse physical small-scale model (TUI) and TinkerSheets, our implementation of IPFs. It aims at helping apprentices understand theoretical concepts presented at schools. We followed a Design-based Research (DBR) approach: ten studies were conducted during the development of the Tinker Environment in authentic classroom settings. Controlled experiments were conducted to address specific questions. v The general research questions concern the respective affordances of paper and tangible components of TaPEs. The analysis is not limited to usability aspects but also considers their impact on group problem-solving activities and their potential in terms of integration of the system in its context of use. A descriptive model is proposed, built around three interaction circles: individual (usability), group (collaboration) and context (integration). Results identify design guidelines that limit the impact of the less direct interaction modality offered by IPFs, allowing TaPEs to overcome the scalability issue while supporting rich interactions. At the group level, observations of groups of apprentices solving problems around the Tinker Environment show that the consistent physical interaction modality offered by TaPEs naturally supports collaborative interactions. Apprentices tend to take implicit roles based on their location around the system. Regarding the context circle, we observed that carefully designed IPFs play the role of bridges between offline and online activities and contribute to a tight integration of the system in a its context (i.e. a classroom). The specific research questions address the potential of the Tinker Environment in this pedagogical context and its appropriation by teachers. The observations conducted with the Tinker Environment show that the warehouse small-scale model reduces the complexity of problems and allows apprentices to engage in meaningful problem-solving activities. Controlled experiments comparing a TUI to a mulitouch interface demonstrate that tangible artifacts lead to a higher learning gain and an increased performance in a problem-solving activity. Collaboration quality and perceived playfulness are also improved. The teacher plays a central role in the use of the environment, guiding apprentices through activities and encouraging reflections during debriefing sessions. The design of IPFs, emphasizing either their interface or document nature, has a strong influence on their ability to support teachers. We finally discuss the two-way adaptation process that took place between teachers and the system during the development of the Tinker Environment

    Adult Learning Sign Language by combining video, interactivity and play

    Get PDF
    One in every six persons in the UK suffers a hearing loss, either as a condition they have been born with or a disorder they acquired during their life. 900,000 people in the UK are severely or profoundly deaf and based on a study by Action On Hearing Loss UK in 2013 only 17 percent of this population, can use the British Sign Language (BSL). That leaves a massive proportion of people with a hearing impediment who do not use sign language struggling in social interaction and suffering from emotional distress, and an even larger proportion of Hearing people who cannot communicate with those of the deaf community. This paper presents a theoretical framework for the design of interactive games to support learning BSL supporting the entire learning cycle, instruction, practice and assessment. It then describes the proposed design of a game based on this framework aiming to close the communication gap between able hearing people and people with a hearing impediment, by providing a tool that facilitates BSL learning targeting adult population. The paper concludes with the planning of a large scale study and directions for further development of this educational resource
    • …
    corecore