3,400 research outputs found

    Exploiting Query Structure and Document Structure to Improve Document Retrieval Effectiveness

    Get PDF
    In this paper we present a systematic analysis of document retrieval using unstructured and structured queries within the score region algebra (SRA) structured retrieval framework. The behavior of di®erent retrieval models, namely Boolean, tf.idf, GPX, language models, and Okapi, is tested using the transparent SRA framework in our three-level structured retrieval system called TIJAH. The retrieval models are implemented along four elementary retrieval aspects: element and term selection, element score computation, score combination, and score propagation. The analysis is performed on a numerous experiments evaluated on TREC and CLEF collections, using manually generated unstructured and structured queries. Unstructured queries range from the short title queries to long title + description + narrative queries. For generating structured queries we exploit the knowledge of the document structure and the content used to semantically describe or classify documents. We show that such structured information can be utilized in retrieval engines to give more precise answers to user queries then when using unstructured queries

    Approximative filtering of XML documents in a publish/subscribe system

    Get PDF
    Publish/subscribe systems filter published documents and inform their subscribers about documents matching their interests. Recent systems have focussed on documents or messages sent in XML format. Subscribers have to be familiar with the underlying XML format to create meaningful subscriptions. A service might support several providers with slightly differing formats, e.g., several publishers of books. This makes the definition of a successful subscription almost impossible. This paper proposes the use of an approximative language for subscriptions. We introduce the design of our ApproXFilter algorithm for approximative filtering in a publish/subscribe system. We present the results of our performance analysis of a prototypical implementation

    An Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    Iris: an Extensible Application for Building and Analyzing Spectral Energy Distributions

    Get PDF
    Iris is an extensible application that provides astronomers with a user-friendly interface capable of ingesting broad-band data from many different sources in order to build, explore, and model spectral energy distributions (SEDs). Iris takes advantage of the standards defined by the International Virtual Observatory Alliance, but hides the technicalities of such standards by implementing different layers of abstraction on top of them. Such intermediate layers provide hooks that users and developers can exploit in order to extend the capabilities provided by Iris. For instance, custom Python models can be combined in arbitrary ways with the Iris built-in models or with other custom functions. As such, Iris offers a platform for the development and integration of SED data, services, and applications, either from the user's system or from the web. In this paper we describe the built-in features provided by Iris for building and analyzing SEDs. We also explore in some detail the Iris framework and software development kit, showing how astronomers and software developers can plug their code into an integrated SED analysis environment.Comment: 18 pages, 8 figures, accepted for publication in Astronomy & Computin

    Indexing, browsing and searching of digital video

    Get PDF
    Video is a communications medium that normally brings together moving pictures with a synchronised audio track into a discrete piece or pieces of information. The size of a “piece ” of video can variously be referred to as a frame, a shot, a scene, a clip, a programme or an episode, and these are distinguished by their lengths and by their composition. We shall return to the definition of each of these in section 4 this chapter. In modern society, video is ver
    corecore