43,443 research outputs found

    A Deeper Look at Facial Expression Dataset Bias

    Full text link
    Datasets play an important role in the progress of facial expression recognition algorithms, but they may suffer from obvious biases caused by different cultures and collection conditions. To look deeper into this bias, we first conduct comprehensive experiments on dataset recognition and crossdataset generalization tasks, and for the first time explore the intrinsic causes of the dataset discrepancy. The results quantitatively verify that current datasets have a strong buildin bias and corresponding analyses indicate that the conditional probability distributions between source and target datasets are different. However, previous researches are mainly based on shallow features with limited discriminative ability under the assumption that the conditional distribution remains unchanged across domains. To address these issues, we further propose a novel deep Emotion-Conditional Adaption Network (ECAN) to learn domain-invariant and discriminative feature representations, which can match both the marginal and the conditional distributions across domains simultaneously. In addition, the largely ignored expression class distribution bias is also addressed by a learnable re-weighting parameter, so that the training and testing domains can share similar class distribution. Extensive cross-database experiments on both lab-controlled datasets (CK+, JAFFE, MMI and Oulu-CASIA) and real-world databases (AffectNet, FER2013, RAF-DB 2.0 and SFEW 2.0) demonstrate that our ECAN can yield competitive performances across various facial expression transfer tasks and outperform the state-of-theart methods

    Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges

    Full text link
    Machine learning has evolved into an enabling technology for a wide range of highly successful applications. The potential for this success to continue and accelerate has placed machine learning (ML) at the top of research, economic and political agendas. Such unprecedented interest is fuelled by a vision of ML applicability extending to healthcare, transportation, defence and other domains of great societal importance. Achieving this vision requires the use of ML in safety-critical applications that demand levels of assurance beyond those needed for current ML applications. Our paper provides a comprehensive survey of the state-of-the-art in the assurance of ML, i.e. in the generation of evidence that ML is sufficiently safe for its intended use. The survey covers the methods capable of providing such evidence at different stages of the machine learning lifecycle, i.e. of the complex, iterative process that starts with the collection of the data used to train an ML component for a system, and ends with the deployment of that component within the system. The paper begins with a systematic presentation of the ML lifecycle and its stages. We then define assurance desiderata for each stage, review existing methods that contribute to achieving these desiderata, and identify open challenges that require further research

    Transfer Learning for Thermal Comfort Prediction in Multiple Cities

    Full text link
    HVAC (Heating, Ventilation and Air Conditioning) system is an important part of a building, which constitutes up to 40% of building energy usage. The main purpose of HVAC, maintaining appropriate thermal comfort, is crucial for the best utilisation of energy usage. Besides, thermal comfort is also crucial for well-being, health, and work productivity. Recently, data-driven thermal comfort models have got better performance than traditional knowledge-based methods (e.g. Predicted Mean Vote Model). An accurate thermal comfort model requires a large amount of self-reported thermal comfort data from indoor occupants which undoubtedly remains a challenge for researchers. In this research, we aim to tackle this data-shortage problem and boost the performance of thermal comfort prediction. We utilise sensor data from multiple cities in the same climate zone to learn thermal comfort patterns. We present a transfer learning based multilayer perceptron model from the same climate zone (TL-MLP-C*) for accurate thermal comfort prediction. Extensive experimental results on ASHRAE RP-884, the Scales Project and Medium US Office datasets show that the performance of the proposed TL-MLP-C* exceeds the state-of-the-art methods in accuracy, precision and F1-score

    Evaluation of Transfer Learning for Classification of: (1) Diabetic Retinopathy by Digital Fundus Photography and (2) Diabetic Macular Edema, Choroidal Neovascularization and Drusen by Optical Coherence Tomography

    Full text link
    Deep learning has been successfully applied to a variety of image classification tasks. There has been keen interest to apply deep learning in the medical domain, particularly specialties that heavily utilize imaging, such as ophthalmology. One issue that may hinder application of deep learning to the medical domain is the vast amount of data necessary to train deep neural networks (DNNs). Because of regulatory and privacy issues associated with medicine, and the generally proprietary nature of data in medical domains, obtaining large datasets to train DNNs is a challenge, particularly in the ophthalmology domain. Transfer learning is a technique developed to address the issue of applying DNNs for domains with limited data. Prior reports on transfer learning have examined custom networks to fully train or used a particular DNN for transfer learning. However, to the best of my knowledge, no work has systematically examined a suite of DNNs for transfer learning for classification of diabetic retinopathy, diabetic macular edema, and two key features of age-related macular degeneration. This work attempts to investigate transfer learning for classification of these ophthalmic conditions. Part I gives a condensed overview of neural networks and the DNNs under evaluation. Part II gives the reader the necessary background concerning diabetic retinopathy and prior work on classification using retinal fundus photographs. The methodology and results of transfer learning for diabetic retinopathy classification are presented, showing that transfer learning towards this domain is feasible, with promising accuracy. Part III gives an overview of diabetic macular edema, choroidal neovascularization and drusen (features associated with age-related macular degeneration), and presents results for transfer learning evaluation using optical coherence tomography to classify these entities

    Legal Area Classification: A Comparative Study of Text Classifiers on Singapore Supreme Court Judgments

    Full text link
    This paper conducts a comparative study on the performance of various machine learning (``ML'') approaches for classifying judgments into legal areas. Using a novel dataset of 6,227 Singapore Supreme Court judgments, we investigate how state-of-the-art NLP methods compare against traditional statistical models when applied to a legal corpus that comprised few but lengthy documents. All approaches tested, including topic model, word embedding, and language model-based classifiers, performed well with as little as a few hundred judgments. However, more work needs to be done to optimize state-of-the-art methods for the legal domain.Comment: Accepted to the 1st Workshop on Natural Legal Language Processing (co-located with NAACL2019

    A Many Objective Optimization Approach for Transfer Learning in EEG Classification

    Full text link
    In Brain-Computer Interfacing (BCI), due to inter-subject non-stationarities of electroencephalogram (EEG), classifiers are trained and tested using EEG from the same subject. When physical disabilities bottleneck the natural modality of performing a task, acquisition of ample training data is difficult which practically obstructs classifier training. Previous works have tackled this problem by generalizing the feature space amongst multiple subjects including the test subject. This work aims at knowledge transfer to classify EEG of the target subject using a classifier trained with the EEG of another unit source subject. A many-objective optimization framework is proposed where optimal weights are obtained for projecting features in another dimension such that single source-trained target EEG classification performance is maximized with the modified features. To validate the approach, motor imagery tasks from the BCI Competition III Dataset IVa are classified using power spectral density based features and linear support vector machine. Several performance metrics, improvement in accuracy, sensitivity to the dimension of the projected space, assess the efficacy of the proposed approach. Addressing single-source training promotes independent living of differently-abled individuals by reducing assistance from others. The proposed approach eliminates the requirement of EEG from multiple source subjects and is applicable to any existing feature extractors and classifiers. Source code is available at http://worksupplements.droppages.com/tlbci.html.Comment: Pre-submission wor

    Synthetic Examples Improve Generalization for Rare Classes

    Full text link
    The ability to detect and classify rare occurrences in images has important applications - for example, counting rare and endangered species when studying biodiversity, or detecting infrequent traffic scenarios that pose a danger to self-driving cars. Few-shot learning is an open problem: current computer vision systems struggle to categorize objects they have seen only rarely during training, and collecting a sufficient number of training examples of rare events is often challenging and expensive, and sometimes outright impossible. We explore in depth an approach to this problem: complementing the few available training images with ad-hoc simulated data. Our testbed is animal species classification, which has a real-world long-tailed distribution. We analyze the effect of different axes of variation in simulation, such as pose, lighting, model, and simulation method, and we prescribe best practices for efficiently incorporating simulated data for real-world performance gain. Our experiments reveal that synthetic data can considerably reduce error rates for classes that are rare, that as the amount of simulated data is increased, accuracy on the target class improves, and that high variation of simulated data provides maximum performance gain

    Multitask Learning for Large-scale Semantic Change Detection

    Full text link
    Change detection is one of the main problems in remote sensing, and is essential to the accurate processing and understanding of the large scale Earth observation data available through programs such as Sentinel and Landsat. Most of the recently proposed change detection methods bring deep learning to this context, but openly available change detection datasets are still very scarce, which limits the methods that can be proposed and tested. In this paper we present the first large scale high resolution semantic change detection (HRSCD) dataset, which enables the usage of deep learning methods for semantic change detection. The dataset contains coregistered RGB image pairs, pixel-wise change information and land cover information. We then propose several methods using fully convolutional neural networks to perform semantic change detection. Most notably, we present a network architecture that performs change detection and land cover mapping simultaneously, while using the predicted land cover information to help to predict changes. We also describe a sequential training scheme that allows this network to be trained without setting a hyperparameter that balances different loss functions and achieves the best overall results.Comment: Preprint submitted to Computer Vision and Image Understandin

    A Survey of Deep Facial Attribute Analysis

    Full text link
    Facial attribute analysis has received considerable attention when deep learning techniques made remarkable breakthroughs in this field over the past few years. Deep learning based facial attribute analysis consists of two basic sub-issues: facial attribute estimation (FAE), which recognizes whether facial attributes are present in given images, and facial attribute manipulation (FAM), which synthesizes or removes desired facial attributes. In this paper, we provide a comprehensive survey of deep facial attribute analysis from the perspectives of both estimation and manipulation. First, we summarize a general pipeline that deep facial attribute analysis follows, which comprises two stages: data preprocessing and model construction. Additionally, we introduce the underlying theories of this two-stage pipeline for both FAE and FAM. Second, the datasets and performance metrics commonly used in facial attribute analysis are presented. Third, we create a taxonomy of state-of-the-art methods and review deep FAE and FAM algorithms in detail. Furthermore, several additional facial attribute related issues are introduced, as well as relevant real-world applications. Finally, we discuss possible challenges and promising future research directions.Comment: submitted to International Journal of Computer Vision (IJCV

    Bellwethers: A Baseline Method For Transfer Learning

    Full text link
    Software analytics builds quality prediction models for software projects. Experience shows that (a) the more projects studied, the more varied are the conclusions; and (b) project managers lose faith in the results of software analytics if those results keep changing. To reduce this conclusion instability, we propose the use of "bellwethers": given N projects from a community the bellwether is the project whose data yields the best predictions on all others. The bellwethers offer a way to mitigate conclusion instability because conclusions about a community are stable as long as this bellwether continues as the best oracle. Bellwethers are also simple to discover (just wrap a for-loop around standard data miners). When compared to other transfer learning methods (TCA+, transfer Naive Bayes, value cognitive boosting), using just the bellwether data to construct a simple transfer learner yields comparable predictions. Further, bellwethers appear in many SE tasks such as defect prediction, effort estimation, and bad smell detection. We hence recommend using bellwethers as a baseline method for transfer learning against which future work should be comparedComment: 23 Page
    • …
    corecore