1,970 research outputs found

    Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid

    Full text link
    Deep neural networks have been widely adopted in recent years, exhibiting impressive performances in several application domains. It has however been shown that they can be fooled by adversarial examples, i.e., images altered by a barely-perceivable adversarial noise, carefully crafted to mislead classification. In this work, we aim to evaluate the extent to which robot-vision systems embodying deep-learning algorithms are vulnerable to adversarial examples, and propose a computationally efficient countermeasure to mitigate this threat, based on rejecting classification of anomalous inputs. We then provide a clearer understanding of the safety properties of deep networks through an intuitive empirical analysis, showing that the mapping learned by such networks essentially violates the smoothness assumption of learning algorithms. We finally discuss the main limitations of this work, including the creation of real-world adversarial examples, and sketch promising research directions.Comment: Accepted for publication at the ICCV 2017 Workshop on Vision in Practice on Autonomous Robots (ViPAR

    Multiclass Learning Approaches: A Theoretical Comparison with Implications

    Full text link
    We theoretically analyze and compare the following five popular multiclass classification methods: One vs. All, All Pairs, Tree-based classifiers, Error Correcting Output Codes (ECOC) with randomly generated code matrices, and Multiclass SVM. In the first four methods, the classification is based on a reduction to binary classification. We consider the case where the binary classifier comes from a class of VC dimension dd, and in particular from the class of halfspaces over Rd\reals^d. We analyze both the estimation error and the approximation error of these methods. Our analysis reveals interesting conclusions of practical relevance, regarding the success of the different approaches under various conditions. Our proof technique employs tools from VC theory to analyze the \emph{approximation error} of hypothesis classes. This is in sharp contrast to most, if not all, previous uses of VC theory, which only deal with estimation error
    corecore