4,552 research outputs found

    Pando: Personal Volunteer Computing in Browsers

    Full text link
    The large penetration and continued growth in ownership of personal electronic devices represents a freely available and largely untapped source of computing power. To leverage those, we present Pando, a new volunteer computing tool based on a declarative concurrent programming model and implemented using JavaScript, WebRTC, and WebSockets. This tool enables a dynamically varying number of failure-prone personal devices contributed by volunteers to parallelize the application of a function on a stream of values, by using the devices' browsers. We show that Pando can provide throughput improvements compared to a single personal device, on a variety of compute-bound applications including animation rendering and image processing. We also show the flexibility of our approach by deploying Pando on personal devices connected over a local network, on Grid5000, a French-wide computing grid in a virtual private network, and seven PlanetLab nodes distributed in a wide area network over Europe.Comment: 14 pages, 12 figures, 2 table

    Asynchronous Evolution of Deep Neural Network Architectures

    Full text link
    Many evolutionary algorithms (EAs) take advantage of parallel evaluation of candidates. However, if evaluation times vary significantly, many worker nodes (i.e.,\ compute clients) are idle much of the time, waiting for the next generation to be created. Evolutionary neural architecture search (ENAS), a class of EAs that optimizes the architecture and hyperparameters of deep neural networks, is particularly vulnerable to this issue. This paper proposes a generic asynchronous evaluation strategy (AES) that is then adapted to work with ENAS. AES increases throughput by maintaining a queue of upto KK individuals ready to be sent to the workers for evaluation and proceeding to the next generation as soon as M<<KM<<K individuals have been evaluated by the workers. A suitable value for MM is determined experimentally, balancing diversity and efficiency. To showcase the generality and power of AES, it was first evaluated in 11-bit multiplexer design (a single-population verifiable discovery task) and then scaled up to ENAS for image captioning (a multi-population open-ended-optimization task). In both problems, a multifold performance improvement was observed, suggesting that AES is a promising method for parallelizing the evolution of complex systems with long and variable evaluation times, such as those in ENAS

    Automated design of boolean satisfiability solvers employing evolutionary computation

    Get PDF
    Modern society gives rise to complex problems which sometimes lend themselves to being transformed into Boolean satisfiability (SAT) decision problems; this thesis presents an example from the program understanding domain. Current conflict-driven clause learning (CDCL) SAT solvers employ all-purpose heuristics for making decisions when finding truth assignments for arbitrary logical expressions called SAT instances. The instances derived from a particular problem class exhibit a unique underlying structure which impacts a solver\u27s effectiveness. Thus, tailoring the solver heuristics to a particular problem class can significantly enhance the solver\u27s performance; however, manual specialization is very labor intensive. Automated development may apply hyper-heuristics to search program space by utilizing problem-derived building blocks. This thesis demonstrates the potential for genetic programming (GP) powered hyper-heuristic driven automated design of algorithms to create tailored CDCL solvers, in this case through custom variable scoring and learnt clause scoring heuristics, with significantly better performance on targeted classes of SAT problem instances. As the run-time of GP is often dominated by fitness evaluation, evaluating multiple offspring in parallel typically reduces the time incurred by fitness evaluation proportional to the number of parallel processing units. The naive synchronous approach requires an entire generation to be evaluated before progressing to the next generation; as such, heterogeneity in the evaluation times will degrade the performance gain, as parallel processing units will have to idle until the longest evaluation has completed. This thesis shows empirical evidence justifying the employment of an asynchronous parallel model for GP powered hyper-heuristics applied to SAT solver space, rather than the generational synchronous alternative, for gaining speed-ups in evolution time. Additionally, this thesis explores the use of a multi-objective GP to reveal the trade-off surface between multiple CDCL attributes --Abstract, page iii

    Enhanced parallel Differential Evolution algorithm for problems in computational systems biology

    Get PDF
    [Abstract] Many key problems in computational systems biology and bioinformatics can be formulated and solved using a global optimization framework. The complexity of the underlying mathematical models require the use of efficient solvers in order to obtain satisfactory results in reasonable computation times. Metaheuristics are gaining recognition in this context, with Differential Evolution (DE) as one of the most popular methods. However, for most realistic applications, like those considering parameter estimation in dynamic models, DE still requires excessive computation times. Here we consider this latter class of problems and present several enhancements to DE based on the introduction of additional algorithmic steps and the exploitation of parallelism. In particular, we propose an asynchronous parallel implementation of DE which has been extended with improved heuristics to exploit the specific structure of parameter estimation problems in computational systems biology. The proposed method is evaluated with different types of benchmarks problems: (i) black-box global optimization problems and (ii) calibration of non-linear dynamic models of biological systems, obtaining excellent results both in terms of quality of the solution and regarding speedup and scalability.Ministerio de Economía y Competitividad; DPI2011-28112-C04-03Consejo Superior de Investigaciones Científicas; PIE-201170E018Ministerio de Ciencia e Innovación; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/05

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Green Parallel Metaheuristics: Design, Implementation, and Evaluation

    Get PDF
    Fecha de lectura de Tesis Doctoral 14 mayo 2020Green parallel metaheuristics (GPM) is a new concept we want to introduce in this thesis. It is an idea inspired by two facts: (i) parallel metaheuristics could help as unique tools to solve optimization problems in energy savings applications and sustainability, and (ii) these algorithms themselves run on multiprocessors, clusters, and grids of computers and then consume energy, so they need an energy analysis study for their different implementations over multiprocessors. The context for this thesis is to make a modern and competitive effort to extend the capability of present intelligent search optimization techniques. Analyzing the different sequential and parallel metaheuristics considering its energy consumption requires a deep investigation of the numerical performance, the execution time for efficient future designing to these algorithms. We present a study of the speed-up of the different parallel implementations over a different number of computing units. Moreover, we analyze and compare the energy consumption and numerical performance of the sequential/parallel algorithms and their components: a jump in the efficiency of the algorithms that would probably have a wide impact on the domains involved.El Instituto Egipcio en Madrid, dependiente del Gobierno de Egipto
    • …
    corecore