555 research outputs found

    Optimizing Human Performance in Mobile Text Entry

    Get PDF
    Although text entry on mobile phones is abundant, research strives to achieve desktop typing performance "on the go". But how can researchers evaluate new and existing mobile text entry techniques? How can they ensure that evaluations are conducted in a consistent manner that facilitates comparison? What forms of input are possible on a mobile device? Do the audio and haptic feedback options with most touchscreen keyboards affect performance? What influences users' preference for one feedback or another? Can rearranging the characters and keys of a keyboard improve performance? This dissertation answers these questions and more. The developed TEMA software allows researchers to evaluate mobile text entry methods in an easy, detailed, and consistent manner. Many in academia and industry have adopted it. TEMA was used to evaluate a typical QWERTY keyboard with multiple options for audio and haptic feedback. Though feedback did not have a significant effect on performance, a survey revealed that users' choice of feedback is influenced by social and technical factors. Another study using TEMA showed that novice users entered text faster using a tapping technique than with a gesture or handwriting technique. This motivated rearranging the keys and characters to create a new keyboard, MIME, that would provide better performance for expert users. Data on character frequency and key selection times were gathered and used to design MIME. A longitudinal user study using TEMA revealed an entry speed of 17 wpm and a total error rate of 1.7% for MIME, compared to 23 wpm and 5.2% for QWERTY. Although MIME's entry speed did not surpass QWERTY's during the study, it is projected to do so after twelve hours of practice. MIME's error rate was consistently low and significantly lower than QWERTY's. In addition, participants found MIME more comfortable to use, with some reporting hand soreness after using QWERTY for extended periods

    Comparing Smartphone Speech Recognition and Touchscreen Typing for Composition and Transcription

    Get PDF
    International audienceRuan et al. found transcribing short phrases with speech recognition nearly 200% faster than typing on a smartphone. We extend this comparison to a novel composition task, using a protocol that enables a controlled comparison with transcription. Results show that both composing and transcribing with speech is faster than typing. But, the magnitude of this difference is lower with composition, and speech has a lower error rate than keyboard during composition, but not during transcription. When transcribing, speech outperformed typing in most NASA-TLX measures, but when composing, there were no significant differences between typing and speech for any measure except physical demand

    Comparing Smartphone Speech Recognition and Touchscreen Typing for Composition and Transcription

    Get PDF
    Ruan et al. found transcribing short phrases with speech recognition nearly 200% faster than typing on a smartphone. We extend this comparison to a novel composition task, using a protocol that enables a controlled comparison with transcription. Results show that both composing and transcribing with speech is faster than typing. But, the magnitude of this difference is lower with composition, and speech has a lower error rate than keyboard during composition, but not during transcription. When transcribing, speech outperformed typing in most NASA-TLX measures, but when composing, there were no significant differences between typing and speech for any measure except physical demand

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    Chinese Text Entry with Mobile Devices

    Get PDF
    Tietokoneiden ja nykyaikaisten matkapuhelimien käytön kannalta on olennaista, että niihin voidaan syöttää tekstiä tehokkaasti. Kiinan kielen eri murteita puhuu äidinkielenään noin viidesosa maailman väestöstä eli yli miljardi ihmistä. Kiinan kielen merkki- ja tavuperustaisuus tekee siitä tekstinsyötön kannalta ainutlaatuisen haastavan. Monet kiinalaisista merkeistä ovat rakenteeltaan monimutkaisia ja homofonisia (ääntyvät samalla tavoin) joidenkin muiden merkkien kanssa. Syötettäessä tekstiä näppäimistöltä tavallinen tapa on käyttää ns. pinyin-koodeja, joiden avulla kukin kiinan merkki voidaan esittää useasta latinalaisen aakkoston merkistä koostuvana koodina. Homofoniasta johtuen tarkoitettu kiinan kielen merkki joudutaan tämän jälkeen vielä valitsemaan usean vaihtoehdon joukosta, mikä tekee tekstinsyöttöprosessista vaikeampaa kuin romaanisten kielten tapauksessa. Lisäksi on otettava huomioon Kiinan eri osissa puhutut useat murteet. Kaikki nämä tekijät yhdessä tekevät kiinankielisen tekstin syötöstä tietokoneille haastavaa. Tämän väitöskirjan tavoitteena on parantaa kiinankielisen tekstin syöttötapojen käyttäjäkokemusta käytettäessä matkapuhelimia ja muita mobiililaitteita. Väitöskirjassa tutkitaan empiiristen kokeiden ja mallinnuksen avulla uusia tekstinsyöttötapoja ja niiden käyttöä. Tutkimuksen kohteena on neljä erilaista tekstinsyöttötapaa: kiinankielen käsinkirjoituksen tunnistus, pyörivän kiekon avulla tapahtuva tekstinsyöttö, mandariinikiinaan perustuva sanelu, ja numeronäppäinten avulla tapahtuva pinyin-koodien syöttö. Työssä ehdotetaan uusia tekniikoita sekä käsinkirjoituksen tunnistukseen että kiekkoa käyttävään pinyin-koodien syöttöön. Empiirisissä kokeissa osoittautui että käyttäjät pitivät uusista tekniikoista. Mandariinikiinalle on suunniteltu lyhytviestien sanelusovellus, josta on tehty kaksi käyttäjäkoetta. Myös numeronäppäinten avulla tapahtuvaa pinyin-koodien syöttöä on tutkittu kahdessa kokeessa. Ensimmäisessä kokeessa vertailtiin viittä eri menetelmää. Se tuotti suunnitteluohjeita etenkin koskien fraasien (useamman merkin kokonaisuuksien) syöttöä, tekniikkaa joka voi nopeuttaa tekstinsyöttöä. Toisen osatutkimuksen tuloksena on tekstinsyöttöä kuvaava malli, jonka avulla voidaan ennustaa menetelmän nopeutta kun syötettäessä ei tehdä virheitä. Tutkimus johti myös useisiin jatkotutkimuskysymyksiin. On tarpeen kehittää tehokkaampia menetelmiä tilanteeseen, jossa merkki joudutaan valitsemaan useista vaihtoehdoista. Kehityspotentiaalia on myös merkkien perustana olevien viivojen tunnistustavoissa sekä kosketusnäytöllä esitettyjen näppäimistöjen paremmassa hyödyntämisessä.For using computers and modern mobile phones it is essential that there are efficient methods for providing textual input. About one fifth of the world´s population, or over one billion people, speaks some variety of Chinese as their native language. Chinese has unique characteristics as a logosyllabic language. For example, many Chinese characters are complex in structure and normally homophonic with some others. With keyboards and other key-based input devices the normal approach is to use so-called pinyin input, where the Chinese characters are entered using their pinyin mark that consists of several characters in the Roman alphabet. Because of homophony this technique requires choosing the correct Chinese character from a list of posssible choices, making the input process more complicated than in Roman languages. Moreover, the many varieties of the language in different parts of China have to be taken into account as well. All above factors bring new challenges to the design and evaluation of Chinese text entry methods in computing systems. The overall objective of this dissertation is to improve user experience of Chinese text entry on mobile devices. To achieve the goal, the author explores new interaction solutions and patterns of user behavior in the Chinese text entry process with various approaches including empirical studies and performance modeling. The work covers four means of Chinese text entry on mobile devices: Chinese handwriting recognition, Chinese indirect text entry with a rotator, Mandarin dictation, and Chinese pinyin input methods with a 12-key keypad. New design solutions for Chinese handwriting recognition and pinyin methods utilizing a rotator are proposed and proved being well accepted by users with empirical studies. A Mandarin short message dictation application for mobile phones is also presented , with two associated studies on human factors. Two studies were also carried out on Chinese pinyin input methods that are based on the 12-key keypad. The comparative study of five phrasal pinyin input methods led to design guidelines for the advanced feature of phrasal input. The second study of pinyin input methods produced a predictive model addressing users´ error-free speeds. Based on the conclusions from studies in this thesis, several additional research questions were identified for the future. For example, improvements are necessary to promote user performance on target selection process in Chinese text entry on mobile devices. Moreover, design and studies on stroke methods and Chinese specific soft keyboards are also required

    Predicting and Reducing the Impact of Errors in Character-Based Text Entry

    Get PDF
    This dissertation focuses on the effect of errors in character-based text entry techniques. The effect of errors is targeted from theoretical, behavioral, and practical standpoints. This document starts with a review of the existing literature. It then presents results of a user study that investigated the effect of different error correction conditions on popular text entry performance metrics. Results showed that the way errors are handled has a significant effect on all frequently used error metrics. The outcomes also provided an understanding of how users notice and correct errors. Building on this, the dissertation then presents a new high-level and method-agnostic model for predicting the cost of error correction with a given text entry technique. Unlike the existing models, it accounts for both human and system factors and is general enough to be used with most character-based techniques. A user study verified the model through measuring the effects of a faulty keyboard on text entry performance. Subsequently, the work then explores the potential user adaptation to a gesture recognizer’s misrecognitions in two user studies. Results revealed that users gradually adapt to misrecognition errors by replacing the erroneous gestures with alternative ones, if available. Also, users adapt to a frequently misrecognized gesture faster if it occurs more frequently than the other error-prone gestures. Finally, this work presents a new hybrid approach to simulate pressure detection on standard touchscreens. The new approach combines the existing touch-point- and time-based methods. Results of two user studies showed that it can simulate pressure detection more reliably for at least two pressure levels: regular (~1 N) and extra (~3 N). Then, a new pressure-based text entry technique is presented that does not require tapping outside the virtual keyboard to reject an incorrect or unwanted prediction. Instead, the technique requires users to apply extra pressure for the tap on the next target key. The performance of the new technique was compared with the conventional technique in a user study. Results showed that for inputting short English phrases with 10% non-dictionary words, the new technique increases entry speed by 9% and decreases error rates by 25%. Also, most users (83%) favor the new technique over the conventional one. Together, the research presented in this dissertation gives more insight into on how errors affect text entry and also presents improved text entry methods

    Smartphones and language learning

    Get PDF

    VelociWatch: Designing and evaluating a virtual keyboard for the input of challenging text

    Get PDF
    © 2019 Association for Computing Machinery. Virtual keyboard typing is typically aided by an auto-correct method that decodes a user’s noisy taps into their intended text. This decoding process can reduce error rates and possibly increase entry rates by allowing users to type faster but less precisely. However, virtual keyboard decoders sometimes make mistakes that change a user’s desired word into another. This is particularly problematic for challenging text such as proper names. We investigate whether users can guess words that are likely to cause auto-correct problems and whether users can adjust their behavior to assist the decoder. We conduct computational experiments to decide what predictions to ofer in a virtual keyboard and design a smartwatch keyboard named VelociWatch. Novice users were able to use the features of VelociWatch to enter challenging text at 17 words-per-minute with a corrected error rate of 3%. Interestingly, they wrote slightly faster and just as accurately on a simpler keyboard with limited correction options. Our fnding suggest users may be able to type dif-fcult words on a smartwatch simply by tapping precisely without the use of auto-correct

    Does emotion influence the use of auto-suggest during smartphone typing?

    Get PDF
    Typing based interfaces are common across many mobile applications, especially messaging apps. To reduce the difficulty of typing using keyboard applications on smartphones, smartwatches with restricted space, several techniques, such as auto-complete, auto-suggest, are implemented. Although helpful, these techniques do add more cognitive load on the user. Hence beyond the importance to improve the word recommendations, it is useful to understand the pattern of use of auto-suggestions during typing. Among several factors that may influence use of auto-suggest, the role of emotion has been mostly overlooked, often due to the difficulty of unobtrusively inferring emotion. With advances in affective computing, and ability to infer user's emotional states accurately, it is imperative to investigate how auto-suggest can be guided by emotion aware decisions. In this work, we investigate correlations between user emotion and usage of auto-suggest i.e. whether users prefer to use auto-suggest in specific emotion states. We developed an Android keyboard application, which records auto-suggest usage and collects emotion self-reports from users in a 3-week in-the-wild study. Analysis of the dataset reveals relationship between user reported emotion state and use of auto-suggest. We used the data to train personalized models for predicting use of auto-suggest in specific emotion state. The model can predict use of auto-suggest with an average accuracy (AUCROC) of 82% showing the feasibility of emotion-aware auto-suggestion
    corecore