458 research outputs found

    Cloud Computing Security Services to Mitigate DDoS Attacks

    Get PDF
    This chapter focuses on the challenges and risks faced in cloud security services in the areas which include identity access management, web security, email security, network security, encryption, information security, intrusion management, and disaster management while implementing a cloud service infrastructure. This chapter endorses the best practices in successfully deploying a secure private cloud infrastructure with security measures and mitigation and proposed a unique three-tier infrastructure design to mitigate distributed denial of service attacks on cloud infrastructures

    ROVER: a DNS-based method to detect and prevent IP hijacks

    Get PDF
    2013 Fall.Includes bibliographical references.The Border Gateway Protocol (BGP) is critical to the global internet infrastructure. Unfortunately BGP routing was designed with limited regard for security. As a result, IP route hijacking has been observed for more than 16 years. Well known incidents include a 2008 hijack of YouTube, loss of connectivity for Australia in February 2012, and an event that partially crippled Google in November 2012. Concern has been escalating as critical national infrastructure is reliant on a secure foundation for the Internet. Disruptions to military, banking, utilities, industry, and commerce can be catastrophic. In this dissertation we propose ROVER (Route Origin VERification System), a novel and practical solution for detecting and preventing origin and sub-prefix hijacks. ROVER exploits the reverse DNS for storing route origin data and provides a fail-safe, best effort approach to authentication. This approach can be used with a variety of operational models including fully dynamic in-line BGP filtering, periodically updated authenticated route filters, and real-time notifications for network operators. Our thesis is that ROVER systems can be deployed by a small number of institutions in an incremental fashion and still effectively thwart origin and sub-prefix IP hijacking despite non-participation by the majority of Autonomous System owners. We then present research results supporting this statement. We evaluate the effectiveness of ROVER using simulations on an Internet scale topology as well as with tests on real operational systems. Analyses include a study of IP hijack propagation patterns, effectiveness of various deployment models, critical mass requirements, and an examination of ROVER resilience and scalability

    Implementation of DoS and DDoS attacks on cloud servers

    Get PDF
    Cloud environments face many threats as traditional corporate networks, but due to the vast amount of data stored on cloud servers, providers become an attractive target. Thus the security level of data on the cloud servers is always a key issue from preventing potential attacks. This paper intends to show a relatively easy way to implement a Denial of Service (DoS) attack and/or a Distributed Denial of Service (DDoS) attack. The used Phyton scripts like HULK or XML-RPC are able to make several hundred requests to the server in short period of time. The HULK is better for DoS attack, while XML-RPC is for pure DDoS attack. It is concluded that with proper tools and applications, the access to the VM and DDoS can be implemented relatively easy way

    Edge-Detect: Edge-centric Network Intrusion Detection using Deep Neural Network

    Full text link
    Edge nodes are crucial for detection against multitudes of cyber attacks on Internet-of-Things endpoints and is set to become part of a multi-billion industry. The resource constraints in this novel network infrastructure tier constricts the deployment of existing Network Intrusion Detection System with Deep Learning models (DLM). We address this issue by developing a novel light, fast and accurate 'Edge-Detect' model, which detects Distributed Denial of Service attack on edge nodes using DLM techniques. Our model can work within resource restrictions i.e. low power, memory and processing capabilities, to produce accurate results at a meaningful pace. It is built by creating layers of Long Short-Term Memory or Gated Recurrent Unit based cells, which are known for their excellent representation of sequential data. We designed a practical data science pipeline with Recurring Neural Network to learn from the network packet behavior in order to identify whether it is normal or attack-oriented. The model evaluation is from deployment on actual edge node represented by Raspberry Pi using current cybersecurity dataset (UNSW2015). Our results demonstrate that in comparison to conventional DLM techniques, our model maintains a high testing accuracy of 99% even with lower resource utilization in terms of cpu and memory. In addition, it is nearly 3 times smaller in size than the state-of-art model and yet requires a much lower testing time

    Icarus: a cloud security perspective

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringIncreasingly, cloud computing is used because of its significant advantages. However, this use can increase risk, as the solutions are not in the organizations’ infrastructure but in an external perimeter. This thesis presents a study of cloud security in which an agnostic reference architecture is developed for any cloud service provider. The three most used providers are also compared in order to materialize the architecture and make a proof of concept. The solution presented was based on the controls in Annex A of ISO 27001 (information security) and aimed to minimize the increased risk of applications hosted in the cloud as much as possible and speed up the process of any need to obtain ISO 27001 certification.Cada vez mais, a computação em nuvem é utilizada devido às suas grandes vantagens. No entanto, esta utilização pode vir com um risco acrescido, pois as soluções não estão nas infraestruturas das organizações mas, sim num perímetro externo. Esta tese apresenta um estudo de segurança na nuvem em que é desenvolvida uma arquitectura de referencia agnóstica a qualquer prestador de computação em nuvem. São comparados também os três prestadores mais utilizados a fim de materializar a arquitectura e fazer uma prova de conceito. A solução apresentada foi baseada nos controlos do anexo A do ISO 27001 (segurança da informação) e tem como objetivo minimizar ao máximo o risco acrescido das aplicações hospedadas na nuvem e acelerar o processo de eventual necessidade de obter a certificação do ISO 27001

    Improving the resilience of cyber-physical systems under strategic adversaries

    Get PDF
    Renewable energy resources challenge traditional energy system operations by substituting the stability and predictability of fossil fuel based generation with the unreliability and uncertainty of wind and solar power. Rising demand for green energy drives grid operators to integrate sensors, smart meters, and distributed control to compensate for this uncertainty and improve the operational efficiency of the grid. Real-time negotiations enable producers and consumers to adjust power loads during shortage periods, such as an unexpected outage or weather event, and to adapt to time-varying energy needs. While such systems improve grid performance, practical implementation challenges can derail the operation of these distributed cyber-physical systems. Network disruptions introduce instability into control feedback systems, and strategic adversaries can manipulate power markets for financial gain. This dissertation analyzes the impact of these outages and adversaries on cyber-physical systems and provides methods for improving resilience, with an emphasis on distributed energy systems. First, a financial model of an interdependent energy market lays the groundwork for profit-oriented attacks and defenses, and a game theoretic strategy optimizes attack plans and defensive investments in energy systems with multiple independent actors. Then attacks and defenses are translated from a theoretical context to a real-time energy market via denial of service (DoS) outages and moving target defenses. Analysis on two market mechanisms shows how adversaries can disrupt market operation, destabilize negotiations, and extract profits by attacking network links and disrupting communication. Finally, a low-cost DoS defense technique demonstrates a method that energy systems may use to defend against attacks

    On the placement of security-related Virtualised Network Functions over data center networks

    Get PDF
    Middleboxes are typically hardware-accelerated appliances such as firewalls, proxies, WAN optimizers, and NATs that play an important role in service provisioning over today's data centers. Reports show that the number of middleboxes is on par with the number of routers, and consequently represent a significant commitment from an operator's capital and operational expenditure budgets. Over the past few years, software middleboxes known as Virtual Network Functions (VNFs) are replacing the hardware appliances to reduce cost, improve the flexibility of deployment, and allow for extending network functionality in short timescales. This dissertation aims at identifying the unique characteristics of security modules implementation as VNFs in virtualised environments. We focus on the placement of the security VNFs to minimise resource usage without violating the security imposed constraints as a challenge faced by operators today who want to increase the usable capacity of their infrastructures. The work presented here, focuses on the multi-tenant environment where customised security services are provided to tenants. The services are implemented as a software module deployed as a VNF collocated with network switches to reduce overhead. Furthermore, the thesis presents a formalisation for the resource-aware placement of security VNFs and provides a constraint programming solution along with examining heuristic, meta-heuristic and near-optimal/subset-sum solutions to solve larger size problems in reduced time. The results of this work identify the unique and vital constraints of the placement of security functions. They demonstrate that the granularity of the traffic required by the security functions imposes traffic constraints that increase the resource overhead of the deployment. The work identifies the north-south traffic in data centers as the traffic designed for processing for security functions rather than east-west traffic. It asserts that the non-sharing strategy of security modules will reduce the complexity in case of the multi-tenant environment. Furthermore, the work adopts on-path deployment of security VNF traffic strategy, which is shown to reduce resources overhead compared to previous approaches

    Shielding against Web Application Attacks - Detection Techniques and Classification

    Get PDF
    The field of IoT web applications is facing a range of security risks and system attacks due to the increasing complexity and size of home automation datasets. One of the primary concerns is the identification of Distributed Denial of Service (DDoS) attacks in home automation systems. Attackers can easily access various IoT web application assets by entering a home automation dataset or clicking a link, making them vulnerable to different types of web attacks. To address these challenges, the cloud has introduced the Edge of Things paradigm, which uses multiple concurrent deep models to enhance system stability and enable easy data revelation updates. Therefore, identifying malicious attacks is crucial for improving the reliability and security of IoT web applications. This paper uses a Machine Learning algorithm that can accurately identify web attacks using unique keywords. Smart home devices are classified into four classes based on their traffic predictability levels, and a neural system recognition model is proposed to classify these attacks with a high degree of accuracy, outperforming other classification models. The application of deep learning in identifying and classifying attacks has significant theoretical and scientific value for web security investigations. It also provides innovative ideas for intelligent security detection by classifying web visitors, making it possible to identify and prevent potential security threats
    corecore