9 research outputs found

    Adaptive Filtering of Accelerometer and Electromyography Signals Using Extended Kalman Filter for Chewing Muscle Activities

    Get PDF
    Today Electromyography (EMG) and ac- celerometer (MEMS) based signals can be used in the clinical diagnosis of physical states of muscle activities such as fatigue, muscle weakness, pain, and tremors and in external or wearable robotic exoskeletal systems used in rehabilitation areas. During the record- ing of these signals taken from the skin surface through non-invasive processes, analysis of the signal becomes difficult due to the electrodes attached to the skin not fully contacting, involuntary body movements, and noises from peripheral muscles. In addition, param- eters such as age and skin structure of the subjects can also affect the signal. Considering these nega- tive factors, a new adaptive method based on Extended Kalman Filtering (EKF) model for more effective fil- tering of the muscle signals based on both EMG and MEMS is proposed in this study. Moreover, the accu- racy of the parametric values determined by the filter automatically according to the most effective time and frequency features that represent noisy and filtered sig- nals was determined by different machine learning and classification algorithms. It was verified that the fil- ter performs adaptive filtering with 100 % effectiveness with Linear Discriminant

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Proceedings. 24. Workshop Computational Intelligence, Dortmund, 27. - 28. November 2014

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 24. Workshops "Computational Intelligence" des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA), der vom 27. - 28. November 2014 in Dortmund stattgefunden hat. Die Schwerpunkte sind Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen Anwendungen und Benchmark-Problemen

    Enhancing RGB-D SLAM Using Deep Learning

    Get PDF

    Gait analysis in neurological populations: Progression in the use of wearables

    Get PDF
    Gait assessment is an essential tool for clinical applications not only to diagnose different neurological conditions but also to monitor disease progression as it contributes to the understanding of underlying deficits. There are established methods and models for data collection and interpretation of gait assessment within different pathologies. This narrative review aims to depict the evolution of gait assessment from observation and rating scales to wearable sensors and laboratory technologies, and provide possible future directions. In this context, we first present an extensive review of current clinical outcomes and gait models. Then, we demonstrate commercially available wearable technologies with their technical capabilities along with their use in gait assessment studies for various neurological conditions. In the next sections, a descriptive knowledge for existing inertial based algorithms and a sign based guide that shows the outcomes of previous neurological gait assessment studies are presented. Finally, we state a discussion for the use of wearables in gait assessment and speculate the possible research directions by revealing the limitations and knowledge gaps in the literature

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis
    corecore