1,046 research outputs found

    Clinical text data in machine learning: Systematic review

    Get PDF
    Background: Clinical narratives represent the main form of communication within healthcare providing a personalized account of patient history and assessments, offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. Objective: The main aim of this study is to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigate the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multi-faceted interface, to perform a literature search against MEDLINE. We identified a total of 110 relevant studies and extracted information about the text data used to support machine learning, the NLP tasks supported and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation and any relevant statistics. Results: The vast majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable due to sensitive nature of data considered. Beside the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The vast majority of studies focused on the task of text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management and surveillance. Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which does not require data annotation

    Automated Deductive Content Analysis of Text: A Deep Contrastive and Active Learning Based Approach

    Get PDF
    Content analysis traditionally involves human coders manually combing through text documents to search for relevant concepts and categories. However, this approach is time-intensive and not scalable, particularly for secondary data like social media content, news articles, or corporate reports. To address this problem, the paper presents an automated framework called Automated Deductive Content Analysis of Text (ADCAT) that uses deep learning-based semantic techniques, ontology of validated construct measures, large language model, human-in-the-loop disambiguation, and a novel augmentation-based weighted contrastive learning approach for improved language representations, to build a scalable approach for deductive content analysis. We demonstrate the effectiveness of the proposed approach to identify firm innovation strategies from their 10-K reports to obtain inferences reasonably close to human coding

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Automatic extraction of robotic surgery actions from text and kinematic data

    Get PDF
    The latest generation of robotic systems is becoming increasingly autonomous due to technological advancements and artificial intelligence. The medical field, particularly surgery, is also interested in these technologies because automation would benefit surgeons and patients. While the research community is active in this direction, commercial surgical robots do not currently operate autonomously due to the risks involved in dealing with human patients: it is still considered safer to rely on human surgeons' intelligence for decision-making issues. This means that robots must possess human-like intelligence, including various reasoning capabilities and extensive knowledge, to become more autonomous and credible. As demonstrated by current research in the field, indeed, one of the most critical aspects in developing autonomous systems is the acquisition and management of knowledge. In particular, a surgical robot must base its actions on solid procedural surgical knowledge to operate autonomously, safely, and expertly. This thesis investigates different possibilities for automatically extracting and managing knowledge from text and kinematic data. In the first part, we investigated the possibility of extracting procedural surgical knowledge from real intervention descriptions available in textbooks and academic papers on the robotic-surgical domains, by exploiting Transformer-based pre-trained language models. In particular, we released SurgicBERTa, a RoBERTa-based pre-trained language model for surgical literature understanding. It has been used to detect procedural sentences in books and extract procedural elements from them. Then, with some use cases, we explored the possibilities of translating written instructions into logical rules usable for robotic planning. Since not all the knowledge required for automatizing a procedure is written in texts, we introduce the concept of surgical commonsense, showing how it relates to different autonomy levels. In the second part of the thesis, we analyzed surgical procedures from a lower granularity level, showing how each surgical gesture is associated with a given combination of kinematic data

    Automating Systematic Literature Reviews with Natural Language Processing and Text Mining: a Systematic Literature Review

    Full text link
    Objectives: An SLR is presented focusing on text mining based automation of SLR creation. The present review identifies the objectives of the automation studies and the aspects of those steps that were automated. In so doing, the various ML techniques used, challenges, limitations and scope of further research are explained. Methods: Accessible published literature studies that primarily focus on automation of study selection, study quality assessment, data extraction and data synthesis portions of SLR. Twenty-nine studies were analyzed. Results: This review identifies the objectives of the automation studies, steps within the study selection, study quality assessment, data extraction and data synthesis portions that were automated, the various ML techniques used, challenges, limitations and scope of further research. Discussion: We describe uses of NLP/TM techniques to support increased automation of systematic literature reviews. This area has attracted increase attention in the last decade due to significant gaps in the applicability of TM to automate steps in the SLR process. There are significant gaps in the application of TM and related automation techniques in the areas of data extraction, monitoring, quality assessment and data synthesis. There is thus a need for continued progress in this area, and this is expected to ultimately significantly facilitate the construction of systematic literature reviews

    Human-competitive automatic topic indexing

    Get PDF
    Topic indexing is the task of identifying the main topics covered by a document. These are useful for many purposes: as subject headings in libraries, as keywords in academic publications and as tags on the web. Knowing a document's topics helps people judge its relevance quickly. However, assigning topics manually is labor intensive. This thesis shows how to generate them automatically in a way that competes with human performance. Three kinds of indexing are investigated: term assignment, a task commonly performed by librarians, who select topics from a controlled vocabulary; tagging, a popular activity of web users, who choose topics freely; and a new method of keyphrase extraction, where topics are equated to Wikipedia article names. A general two-stage algorithm is introduced that first selects candidate topics and then ranks them by significance based on their properties. These properties draw on statistical, semantic, domain-specific and encyclopedic knowledge. They are combined using a machine learning algorithm that models human indexing behavior from examples. This approach is evaluated by comparing automatically generated topics to those assigned by professional indexers, and by amateurs. We claim that the algorithm is human-competitive because it chooses topics that are as consistent with those assigned by humans as their topics are with each other. The approach is generalizable, requires little training data and applies across different domains and languages
    • 

    corecore