92 research outputs found

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    A hybrid approach to apply dematel in a multi-criteria setting

    Get PDF
    The DEMATEL method has been applied in the Decision Sciences in several studies. However, one has not been able to apply DEMATEL directly to a multi-criteria matrix formed by a set of alternatives and a set of criteria yet. In order to approach this, we propose a novel way to apply DEMATEL to a multi-criteria matrix for ranking a set of alternatives according to their performances in a set of criteria. For accomplishing this, we consider the set of alternatives in a classical multi-criteria problem as the set of components used in a usual DEMATEL application. To set up the influence degree among studied components, we used the preference index of PROMÉTHÉE II. Such preference index takes into consideration the performances of alternatives on all criteria to establish each influence degree. Thereby, we denote the influence degree by preference degree. This new approach is applied to a case study and results are compared against those of three multi-criteria methods. It is then possible to note small, understandable differences among the rankings. This hybrid approach has therefore shown to be theoretically sound and feasible to be used in the practice of Multi-Criteria Decision Analysis

    Digital transformation in the defense industry: A maturity model combining SF-AHP and SF-TODIM approaches

    Get PDF
    As an inevitable process, digitalization has become a priority for many companies. The measurement of digital maturity is the first step toward adequately executing this. Although digital maturity models (DMM) have been developed for different sectors in the literature, such studies in the defense industry are lacking due to sector-specific dynamics. This study aims to close this gap and proposes a digital maturity model specific to the defense industry. In this study, a novel model was developed that combines the SF-AHP and SF-TODIM methods due to the uncertainty and hesitancy contained in the evaluation. The validity of the presented novel model has been demonstrated in a prominent defense company in Turkey. According to the results, the most notable digital maturity dimensions are the evaluation of opportunities and alignment with stakeholders. In addition, the model indicates that the company owns the required soft skills, such as leadership, organizational culture, and strategic determination for digital transformation (DT). On the other hand, essential hard skills such as technology and operational competencies are yet to be improved. Lastly, sensitivity and comparison analyses are conducted to validate and verify the obtained results’ stability and robustness

    Analysis of Decision Support Systems of Industrial Relevance: Application Potential of Fuzzy and Grey Set Theories

    Get PDF
    The present work articulates few case empirical studies on decision making in industrial context. Development of variety of Decision Support System (DSS) under uncertainty and vague information is attempted herein. The study emphases on five important decision making domains where effective decision making may surely enhance overall performance of the organization. The focused territories of this work are i) robot selection, ii) g-resilient supplier selection, iii) third party logistics (3PL) service provider selection, iv) assessment of supply chain’s g-resilient index and v) risk assessment in e-commerce exercises. Firstly, decision support systems in relation to robot selection are conceptualized through adaptation to fuzzy set theory in integration with TODIM and PROMETHEE approach, Grey set theory is also found useful in this regard; and is combined with TODIM approach to identify the best robot alternative. In this work, an attempt is also made to tackle subjective (qualitative) and objective (quantitative) evaluation information simultaneously, towards effective decision making. Supplier selection is a key strategic concern for the large-scale organizations. In view of this, a novel decision support framework is proposed to address g-resilient (green and resilient) supplier selection issues. Green capability of suppliers’ ensures the pollution free operation; while, resiliency deals with unexpected system disruptions. A comparative analysis of the results is also carried out by applying well-known decision making approaches like Fuzzy- TOPSIS and Fuzzy-VIKOR. In relation to 3PL service provider selection, this dissertation proposes a novel ‘Dominance- Based’ model in combination with grey set theory to deal with 3PL provider selection, considering linguistic preferences of the Decision-Makers (DMs). An empirical case study is articulated to demonstrate application potential of the proposed model. The results, obtained thereof, have been compared to that of grey-TOPSIS approach. Another part of this dissertation is to provide an integrated framework in order to assess gresilient (ecosilient) performance of the supply chain of a case automotive company. The overall g-resilient supply chain performance is determined by computing a unique ecosilient (g-resilient) index. The concepts of Fuzzy Performance Importance Index (FPII) along with Degree of Similarity (DOS) (obtained from fuzzy set theory) are applied to rank different gresilient criteria in accordance to their current status of performance. The study is further extended to analyze, and thereby, to mitigate various risk factors (risk sources) involved in e-commerce exercises. A total forty eight major e-commerce risks are recognized and evaluated in a decision making perspective by utilizing the knowledge acquired from the fuzzy set theory. Risk is evaluated as a product of two risk quantifying parameters viz. (i) Likelihood of occurrence and, (ii) Impact. Aforesaid two risk quantifying parameters are assessed in a subjective manner (linguistic human judgment), rather than exploring probabilistic approach of risk analysis. The ‘crisp risk extent’ corresponding to various risk factors are figured out through the proposed fuzzy risk analysis approach. The risk factor possessing high ‘crisp risk extent’ score is said be more critical for the current problem context (toward e-commerce success). Risks are now categorized into different levels of severity (adverse consequences) (i.e. negligible, minor, marginal, critical and catastrophic). Amongst forty eight risk sources, top five risk sources which are supposed to adversely affect the company’s e-commerce performance are recognized through such categorization. The overall risk extent is determined by aggregating individual risks (under ‘critical’ level of severity) using Fuzzy Inference System (FIS). Interpretive Structural Modeling (ISM) is then used to obtain structural relationship amongst aforementioned five risk sources. An appropriate action requirement plan is also suggested, to control and minimize risks associated with e-commerce exercises

    Contents

    Get PDF

    A new rough ordinal priority-based decision support system for purchasing electric vehicles.

    Get PDF
    This study proposes a novel multi-criteria decision-making (MCDM) model based on a rough extension of the Ordinal Priority Approach (OPA) to determine the order of importance of users' perspectives on Electric Vehicle (EV) purchases. Unlike conventional methods that rely on predefined ranks for criteria weighting coefficients, the proposed rough OPA method employs an aggregated rough linguistic matrix, enabling a more precise and unbiased calculation of interval values. Moreover, the model addresses inherent uncertainties by incorporating nonlinear aggregation functions, accommodating decision makers' risk attitudes for flexible decision-making. To validate the model's efficacy, a large-scale post-EV test drive survey is conducted, enabling the determination of relative criterion importance. Sensitivity analysis confirms the robustness of the model, demonstrating that marginal changes in parameters do not alter the ranking order. The results unveil the significance of the reliability criterion and reveal that vehicle-related characteristics outweigh economic and environmental attributes in the decision-making process. Overall, this innovative MCDM model contributes to a more accurate and objective analysis, enhancing the understanding of users' preferences and supporting informed decision-making in EV purchases

    A Review and Classification of Approaches for Dealing with Uncertainty in Multi-Criteria Decision Analysis for Healthcare Decisions

    Get PDF
    Multi-criteria decision analysis (MCDA) is increasingly used to support decisions in healthcare involving multiple and conflicting criteria. Although uncertainty is usually carefully addressed in health economic evaluations, whether and how the different sources of uncertainty are dealt with and with what methods in MCDA is less known. The objective of this study is to review how uncertainty can be explicitly taken into account in MCDA and to discuss which approach may be appropriate for healthcare decision makers. A literature review was conducted in the Scopus and PubMed databases. Two reviewers independently categorized studies according to research areas, the type of MCDA used, and the approach used to quantify uncertainty. Selected full text articles were read for methodological details. The search strategy identified 569 studies. The five approaches most identified were fuzzy set theory (45 % of studies), probabilistic sensitivity analysis (15 %), deterministic sensitivity analysis (31 %), Bayesian framework (6 %), and grey theory (3 %). A large number of papers considered the analytic hierarchy process in combination with fuzzy set theory (31 %). Only 3 % of studies were published in healthcare-related journals. In conclusion, our review identified five different approaches to take uncertainty into account in MCDA. The deterministic approach is most likely sufficient for most healthcare policy decisions because of its low complexity and straightforward implementation. However, more complex approaches may be needed when multiple sources of uncertainty must be considered simultaneousl

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    A hierarchical integration method under social constraints to maximize satisfaction in multiple criteria group decision making systems

    Get PDF
    Aggregating multiple opinions or assessments in a decision has always been a challenging field topic for researchers. Over the last decade, different approaches, mainly based on weighting data sources or decision-makers (DMs), have been proposed to resolve this issue, although social choice theory, focused on frameworks to combine individual opinions, is generally overlooked. To resolve this situation, a novel methodology is developed in this paper based on social choice theory and statistical mathematics. This method innovates by dividing the assessment into components which provides a multiple assessment analysis, assigning weights to each source regarding their position compared to the group for each considered criteria. This multiple-weighting process maximises individual and group satisfaction. Furthermore, the method makes it possible to manage previously assigned influence. An example is given to illustrate the proposed methodology. Additionally, sensitivity analysis is performed and comparisons with other methods are made. Finally, conclusions are presented.The first author acknowledges support from the Spanish Ministry of Education, Culture and Sports [grant number FPU18/01471]. The second and third author wish to recognise their support from the Serra Hunter programme. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version
    corecore