857 research outputs found

    Technical Report: A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters

    Get PDF
    To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time- and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and by how much they differ.Comment: Technical Report for the CCGrid 2018 submission "A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Resource provisioning and scheduling algorithms for hybrid workflows in edge cloud computing

    Get PDF
    In recent years, Internet of Things (IoT) technology has been involved in a wide range of application domains to provide real-time monitoring, tracking and analysis services. The worldwide number of IoT-connected devices is projected to increase to 43 billion by 2023, and IoT technologies are expected to engaged in 25% of business sector. Latency-sensitive applications in scope of intelligent video surveillance, smart home, autonomous vehicle, augmented reality, are all emergent research directions in industry and academia. These applications are required connecting large number of sensing devices to attain the desired level of service quality for decision accuracy in a sensitive timely manner. Moreover, continuous data stream imposes processing large amounts of data, which adds a huge overhead on computing and network resources. Thus, latency-sensitive and resource-intensive applications introduce new challenges for current computing models, i.e, batch and stream. In this thesis, we refer to the integrated application model of stream and batch applications as a hybrid work ow model. The main challenge of the hybrid model is achieving the quality of service (QoS) requirements of the two computation systems. This thesis provides a systemic and detailed modeling for hybrid workflows which describes the internal structure of each application type for purposes of resource estimation, model systems tuning, and cost modeling. For optimizing the execution of hybrid workflows, this thesis proposes algorithms, techniques and frameworks to serve resource provisioning and task scheduling on various computing systems including cloud, edge cloud and cooperative edge cloud. Overall, experimental results provided in this thesis demonstrated strong evidences on the responsibility of proposing different understanding and vision on the applications of integrating stream and batch applications, and how edge computing and other emergent technologies like 5G networks and IoT will contribute on more sophisticated and intelligent solutions in many life disciplines for more safe, secure, healthy, smart and sustainable society

    Data-Aware Scheduling Strategy for Scientific Workflow Applications in IaaS Cloud Computing

    Get PDF
    Scientific workflows benefit from the cloud computing paradigm, which offers access to virtual resources provisioned on pay-as-you-go and on-demand basis. Minimizing resources costs to meet user’s budget is very important in a cloud environment. Several optimization approaches have been proposed to improve the performance and the cost of data-intensive scientific Workflow Scheduling (DiSWS) in cloud computing. However, in the literature, the majority of the DiSWS approaches focused on the use of heuristic and metaheuristic as an optimization method. Furthermore, the tasks hierarchy in data-intensive scientific workflows has not been extensively explored in the current literature. Specifically, in this paper, a data-intensive scientific workflow is represented as a hierarchy, which specifies hierarchical relations between workflow tasks, and an approach for data-intensive workflow scheduling applications is proposed. In this approach, first, the datasets and workflow tasks are modeled as a conditional probability matrix (CPM). Second, several data transformation and hierarchical clustering are applied to the CPM structure to determine the minimum number of virtual machines needed for the workflow execution. In this approach, the hierarchical clustering is done with respect to the budget imposed by the user. After data transformation and hierarchical clustering, the amount of data transmitted between clusters can be reduced, which can improve cost and makespan of the workflow by optimizing the use of virtual resources and network bandwidth. The performance and cost are analyzed using an extension of Cloudsim simulation tool and compared with existing multi-objective approaches. The results demonstrate that our approach reduces resources cost with respect to the user budgets

    Data Placement And Task Mapping Optimization For Big Data Workflows In The Cloud

    Get PDF
    Data-centric workflows naturally process and analyze a huge volume of datasets. In this new era of Big Data there is a growing need to enable data-centric workflows to perform computations at a scale far exceeding a single workstation\u27s capabilities. Therefore, this type of applications can benefit from distributed high performance computing (HPC) infrastructures like cluster, grid or cloud computing. Although data-centric workflows have been applied extensively to structure complex scientific data analysis processes, they fail to address the big data challenges as well as leverage the capability of dynamic resource provisioning in the Cloud. The concept of “big data workflows” is proposed by our research group as the next generation of data-centric workflow technologies to address the limitations of exist-ing workflows technologies in addressing big data challenges. Executing big data workflows in the Cloud is a challenging problem as work-flow tasks and data are required to be partitioned, distributed and assigned to the cloud execution sites (multiple virtual machines). In running such big data work-flows in the cloud distributed across several physical locations, the workflow execution time and the cloud resource utilization efficiency highly depends on the initial placement and distribution of the workflow tasks and datasets across the multiple virtual machines in the Cloud. Several workflow management systems have been developed for scientists to facilitate the use of workflows; however, data and work-flow task placement issue has not been sufficiently addressed yet. In this dissertation, I propose BDAP strategy (Big Data Placement strategy) for data placement and TPS (Task Placement Strategy) for task placement, which improve workflow performance by minimizing data movement across multiple virtual machines in the Cloud during the workflow execution. In addition, I propose CATS (Cultural Algorithm Task Scheduling) for workflow scheduling, which improve workflow performance by minimizing workflow execution cost. In this dissertation, I 1) formalize data and task placement problems in workflows, 2) propose a data placement algorithm that considers both initial input dataset and intermediate datasets obtained during workflow run, 3) propose a task placement algorithm that considers placement of workflow tasks before workflow run, 4) propose a workflow scheduling strategy to minimize the workflow execution cost once the deadline is provided by user and 5)perform extensive experiments in the distributed environment to validate that our proposed strategies provide an effective data and task placement solution to distribute and place big datasets and tasks into the appropriate virtual machines in the Cloud within reasonable time

    Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds

    Full text link
    [EN] To meet the dynamic workload requirements in widespread task-batch based workflow applications, it is important to design algorithms for DAG-based platforms (such as Dryad, Spark and Pegasus) to rent virtual machines from public clouds dynamically. In terms of depths and functionalities, tasks of different task-batches are merged into task-units. A unit-aware deadline division method is investigated for properly dividing workflow deadlines to task deadlines so as to minimize the utilization of rented intervals. A rule-based task scheduling method is presented for allocating tasks to time slots of rented Virtual Machines (VMs) with a task right shifting operation and a weighted priority composite rule. A Unit-aware Rule-based Heuristic (URH) is proposed for elastically provisioning VMs to task-batch based workflows to minimize the rental cost in DAG-based cloud platforms. Effectiveness of the proposed URH methods is verified by comparing them against two adapted existing algorithms for similar problems on some realistic workflows.The authors would like to thank the reviewers for their constructive and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No.61602243 and 61572127), the Natural Science Foundation of Jiangsu Province (Grant No.BK20160846), the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Grant No. 30916014107). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD" (DPI2015-65895-R) financed by FEDER funds.Cai, Z.; Li, X.; Ruiz GarcĂ­a, R. (2019). Resource Provisioning for Task-Batch Based Workflows with Deadlines in Public Clouds. IEEE Transactions on Cloud Computing. 7(3):814-826. https://doi.org/10.1109/TCC.2017.2663426S8148267
    • …
    corecore