1,941 research outputs found

    Comparing Probabilistic Models for Melodic Sequences

    Get PDF
    Modelling the real world complexity of music is a challenge for machine learning. We address the task of modeling melodic sequences from the same music genre. We perform a comparative analysis of two probabilistic models; a Dirichlet Variable Length Markov Model (Dirichlet-VMM) and a Time Convolutional Restricted Boltzmann Machine (TC-RBM). We show that the TC-RBM learns descriptive music features, such as underlying chords and typical melody transitions and dynamics. We assess the models for future prediction and compare their performance to a VMM, which is the current state of the art in melody generation. We show that both models perform significantly better than the VMM, with the Dirichlet-VMM marginally outperforming the TC-RBM. Finally, we evaluate the short order statistics of the models, using the Kullback-Leibler divergence between test sequences and model samples, and show that our proposed methods match the statistics of the music genre significantly better than the VMM.Comment: in Proceedings of the ECML-PKDD 2011. Lecture Notes in Computer Science, vol. 6913, pp. 289-304. Springer (2011

    Predictive uncertainty in auditory sequence processing

    Get PDF
    Copyright © 2014 Hansen and Pearce. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    A group model for stable multi-subject ICA on fMRI datasets

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually correlated brain regions without prior information on the time course of these regions. Some of these sets of regions, interpreted as functional networks, have recently been used to provide markers of brain diseases and open the road to paradigm-free population comparisons. Such group studies raise the question of modeling subject variability within ICA: how can the patterns representative of a group be modeled and estimated via ICA for reliable inter-group comparisons? In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA (Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the features extracted using our procedure are more reproducible at the group level on two datasets of 12 healthy controls: a resting-state and a functional localizer study

    Probabilistic models for melodic prediction

    Get PDF
    AbstractChord progressions are the building blocks from which tonal music is constructed. The choice of a particular representation for chords has a strong impact on statistical modeling of the dependence between chord symbols and the actual sequences of notes in polyphonic music. Melodic prediction is used in this paper as a benchmark task to evaluate the quality of four chord representations using two probabilistic model architectures derived from Input/Output Hidden Markov Models (IOHMMs). Likelihoods and conditional and unconditional prediction error rates are used as complementary measures of the quality of each of the proposed chord representations. We observe empirically that different chord representations are optimal depending on the chosen evaluation metric. Also, representing chords only by their roots appears to be a good compromise in most of the reported experiments

    Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation

    Get PDF
    Engineering and Physical Sciences Research Council (EPSRC) funding via grant EP/M000702/1

    Data-driven, memory-based computational models of human segmentation of musical melody

    Get PDF
    When listening to a piece of music, listeners often identify distinct sections or segments within the piece. Music segmentation is recognised as an important process in the abstraction of musical contents and researchers have attempted to explain how listeners perceive and identify the boundaries of these segments.The present study seeks the development of a system that is capable of performing melodic segmentation in an unsupervised way, by learning from non-annotated musical data. Probabilistic learning methods have been widely used to acquire regularities in large sets of data, with many successful applications in language and speech processing. Some of these applications have found their counterparts in music research and have been used for music prediction and generation, music retrieval or music analysis, but seldom to model perceptual and cognitive aspects of music listening.We present some preliminary experiments on melodic segmentation, which highlight the importance of memory and the role of learning in music listening. These experiments have motivated the development of a computational model for melodic segmentation based on a probabilistic learning paradigm.The model uses a Mixed-memory Markov Model to estimate sequence probabilities from pitch and time-based parametric descriptions of melodic data. We follow the assumption that listeners' perception of feature salience in melodies is strongly related to expectation. Moreover, we conjecture that outstanding entropy variations of certain melodic features coincide with segmentation boundaries as indicated by listeners.Model segmentation predictions are compared with results of a listening study on melodic segmentation carried out with real listeners. Overall results show that changes in prediction entropy along the pieces exhibit significant correspondence with the listeners' segmentation boundaries.Although the model relies only on information theoretic principles to make predictions on the location of segmentation boundaries, it was found that most predicted segments can be matched with boundaries of groupings usually attributed to Gestalt rules.These results question previous research supporting a separation between learningbased and innate bottom-up processes of melodic grouping, and suggesting that some of these latter processes can emerge from acquired regularities in melodic data
    corecore