3,823 research outputs found

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE

    Complexity challenges in ATM

    Get PDF
    After more than 4 years of activity, the ComplexWorld Network, together with the projects and PhDs covered under the SESAR long-term research umbrella, have developed sound research material contributing to progress beyond the state of the art in fields such as resilience, uncertainty, multi-agent systems, metrics and data science. The achievements made by the ComplexWorld stakeholders have also led to the identification of new challenges that need to be addressed in the future. In order to pave the way for complexity science research in Air Traffic Management (ATM) in the coming years, ComplexWorld requested external assessments on how the challenges have been covered and where there are existing gaps. For that purpose, ComplexWorld, with the support of EUROCONTROL, established an expert panel to review selected documentation developed by the network and provide their assessment on their topic of expertise

    Contributions on using embedded memory circuits as physically unclonable functions considering reliability issues

    Get PDF
    [eng] Moving towards Internet-of-Things (IoT) era, hardware security becomes a crucial research topic, because of the growing demand of electronic products that are remotely connected through networks. Novel hardware security primitives based on manufacturing process variability are proposed to enhance the security of the IoT systems. As a trusted root that provides physical randomness, a physically unclonable function is an essential base for hardware security. SRAM devices are becoming one of the most promising alternatives for the implementation of embedded physical unclonable functions as the start-up value of each bit-cell depends largely on the variability related with the manufacturing process. Not all bit-cells experience the same degree of variability, so it is possible that some cells randomly modify their logical starting value, while others will start-up always at the same value. However, physically unclonable function applications, such as identification and key generation, require more constant logical starting value to assure high reliability in PUF response. For this reason, some kind of post-processing is needed to correct the errors in the PUF response. Unfortunately, those cells that have more constant logic output are difficult to be detected in advance. This work characterizes by simulation the start-up value reproducibility proposing several metrics suitable for reliability estimation during design phases. The aim is to be able to predict by simulation the percentage of cells that will be suitable to be used as PUF generators. We evaluate the metrics results and analyze the start-up values reproducibility considering different external perturbation sources like several power supply ramp up times, previous internal values in the bit-cell, and different temperature scenarios. The characterization metrics can be exploited to estimate the number of suitable SRAM cells for use in PUF implementations that can be expected from a specific SRAM design.[cat] En l’era de la Internet de les coses (IoT), garantir la seguretat del hardware ha esdevingut un tema de recerca crucial, en especial a causa de la creixent demanda de productes electrònics que es connecten remotament a través de xarxes. Per millorar la seguretat dels sistemes IoT, s’han proposat noves solucions hardware basades en la variabilitat dels processos de fabricació. Les funcions físicament inclonables (PUF) constitueixen una font fiable d’aleatorietat física i són una base essencial per a la seguretat hardware. Les memòries SRAM s’estan convertint en una de les alternatives més prometedores per a la implementació de funcions físicament inclonables encastades. Això és així ja que el valor d’encesa de cada una de les cel·les que formen els bits de la memòria depèn en gran mesura de la variabilitat pròpia del procés de fabricació. No tots els bits tenen el mateix grau de variabilitat, així que algunes cel·les canvien el seu estat lògic d’encesa de forma aleatòria entre enceses, mentre que d’altres sempre assoleixen el mateix valor en totes les enceses. No obstant això, les funcions físicament inclonables, que s’utilitzen per generar claus d’identificació, requereixen un valor lògic d’encesa constant per tal d’assegurar una resposta fiable del PUF. Per aquest motiu, normalment es necessita algun tipus de postprocessament per corregir els possibles errors presents en la resposta del PUF. Malauradament, les cel·les que presenten una resposta més constant són difícils de detectar a priori. Aquest treball caracteritza per simulació la reproductibilitat del valor d’encesa de cel·les SRAM, i proposa diverses mètriques per estimar la fiabilitat de les cel·les durant les fases de disseny de la memòria. L'objectiu és ser capaç de predir per simulació el percentatge de cel·les que seran adequades per ser utilitzades com PUF. S’avaluen els resultats de diverses mètriques i s’analitza la reproductibilitat dels valors d’encesa de les cel·les considerant diverses fonts de pertorbacions externes, com diferents rampes de tensió per a l’encesa, els valors interns emmagatzemats prèviament en les cel·les, i diferents temperatures. Es proposa utilitzar aquestes mètriques per estimar el nombre de cel·les SRAM adients per ser implementades com a PUF en un disseny d‘SRAM específic.[spa] En la era de la Internet de las cosas (IoT), garantizar la seguridad del hardware se ha convertido en un tema de investigación crucial, en especial a causa de la creciente demanda de productos electrónicos que se conectan remotamente a través de redes. Para mejorar la seguridad de los sistemas IoT, se han propuesto nuevas soluciones hardware basadas en la variabilidad de los procesos de fabricación. Las funciones físicamente inclonables (PUF) constituyen una fuente fiable de aleatoriedad física y son una base esencial para la seguridad hardware. Las memorias SRAM se están convirtiendo en una de las alternativas más prometedoras para la implementación de funciones físicamente inclonables empotradas. Esto es así, puesto que el valor de encendido de cada una de las celdas que forman los bits de la memoria depende en gran medida de la variabilidad propia del proceso de fabricación. No todos los bits tienen el mismo grado de variabilidad. Así pues, algunas celdas cambian su estado lógico de encendido de forma aleatoria entre encendidos, mientras que otras siempre adquieren el mismo valor en todos los encendidos. Sin embargo, las funciones físicamente inclonables, que se utilizan para generar claves de identificación, requieren un valor lógico de encendido constante para asegurar una respuesta fiable del PUF. Por este motivo, normalmente se necesita algún tipo de posprocesado para corregir los posibles errores presentes en la respuesta del PUF. Desafortunadamente, las celdas que presentan una respuesta más constante son difíciles de detectar a priori. Este trabajo caracteriza por simulación la reproductibilidad del valor de encendido de celdas SRAM, y propone varias métricas para estimar la fiabilidad de las celdas durante las fases de diseño de la memoria. El objetivo es ser capaz de predecir por simulación el porcentaje de celdas que serán adecuadas para ser utilizadas como PUF. Se evalúan los resultados de varias métricas y se analiza la reproductibilidad de los valores de encendido de las celdas considerando varias fuentes de perturbaciones externas, como diferentes rampas de tensión para el encendido, los valores internos almacenados previamente en las celdas, y diferentes temperaturas. Se propone utilizar estas métricas para estimar el número de celdas SRAM adecuadas para ser implementadas como PUF en un diseño de SRAM específico

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    ComplexWorld Position Paper

    Get PDF
    The Complex ATM Position Paper is the common research vehicle that defines the high-level, strategic scientific vision for the ComplexWorld Network. The purpose of this document is to provide an orderly and consistent scientific framework for the WP-E complexity theme. The specific objectives of the position paper are to: - analyse the state of the art within the different research areas relevant to the network, identifying the major accomplishments and providing a comprehensive set of references, including the main publications and research projects; - include a complete list of , a list of application topics, and an analysis of which techniques are best suited to each one of those applications; - identify and perform an in-depth analysis of the most promising research avenues and the major research challenges lying at the junction of ATM and complex systems domains, with particular attention to their impact and potential benefits for the ATM community; - identify areas of common interest and synergies with other SESAR activities, with special attention to the research topics covered by other WP-E networks. An additional goal for future versions of this position paper is to develop an indicative roadmap on how these research challenges should be accomplished, providing a guide on how to leverage on different aspects of the complexity research in Air Transport
    corecore