100,844 research outputs found

    Case-based reasoning for meta-heuristics self-parameterization in a multi-agent scheduling system

    Get PDF
    A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature

    Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches

    Full text link
    Deep learning-based MRI diagnosis of internal joint derangement is an emerging field of artificial intelligence, which offers many exciting possibilities for musculoskeletal radiology. A variety of investigational deep learning algorithms have been developed to detect anterior cruciate ligament tears, meniscus tears, and rotator cuff disorders. Additional deep learning-based MRI algorithms have been investigated to detect Achilles tendon tears, recurrence prediction of musculoskeletal neoplasms, and complex segmentation of nerves, bones, and muscles. Proof-of-concept studies suggest that deep learning algorithms may achieve similar diagnostic performances when compared to human readers in meta-analyses; however, musculoskeletal radiologists outperformed most deep learning algorithms in studies including a direct comparison. Earlier investigations and developments of deep learning algorithms focused on the binary classification of the presence or absence of an abnormality, whereas more advanced deep learning algorithms start to include features for characterization and severity grading. While many studies have focused on comparing deep learning algorithms against human readers, there is a paucity of data on the performance differences of radiologists interpreting musculoskeletal MRI studies without and with artificial intelligence support. Similarly, studies demonstrating the generalizability and clinical applicability of deep learning algorithms using realistic clinical settings with workflow-integrated deep learning algorithms are sparse. Contingent upon future studies showing the clinical utility of deep learning algorithms, artificial intelligence may eventually translate into clinical practice to assist detection and characterization of various conditions on musculoskeletal MRI exams

    The Curse of Low Task Diversity: On the Failure of Transfer Learning to Outperform MAML and Their Empirical Equivalence

    Full text link
    Recently, it has been observed that a transfer learning solution might be all we need to solve many few-shot learning benchmarks -- thus raising important questions about when and how meta-learning algorithms should be deployed. In this paper, we seek to clarify these questions by 1. proposing a novel metric -- the diversity coefficient -- to measure the diversity of tasks in a few-shot learning benchmark and 2. by comparing Model-Agnostic Meta-Learning (MAML) and transfer learning under fair conditions (same architecture, same optimizer, and all models trained to convergence). Using the diversity coefficient, we show that the popular MiniImageNet and CIFAR-FS few-shot learning benchmarks have low diversity. This novel insight contextualizes claims that transfer learning solutions are better than meta-learned solutions in the regime of low diversity under a fair comparison. Specifically, we empirically find that a low diversity coefficient correlates with a high similarity between transfer learning and MAML learned solutions in terms of accuracy at meta-test time and classification layer similarity (using feature based distance metrics like SVCCA, PWCCA, CKA, and OPD). To further support our claim, we find this meta-test accuracy holds even as the model size changes. Therefore, we conclude that in the low diversity regime, MAML and transfer learning have equivalent meta-test performance when both are compared fairly. We also hope our work inspires more thoughtful constructions and quantitative evaluations of meta-learning benchmarks in the future.Comment: arXiv admin note: substantial text overlap with arXiv:2112.1312

    Comparing and Tuning Machine Learning Algorithms to Predict Type 2 Diabetes Mellitus

    Get PDF
    The main goals of this work is to study and compare machine learning algorithms to predict the development of type 2 diabetes mellitus. Four classifi cation algorithms have been considered, studying and comparing the accuracy of each one to predict the incidence of type 2 diabetes mellitus seven years in advance. Specifically, the techniques studied are: Decision Tree, Random Forest, kNN (k-Nearest Neighbors) and Neural Networks. The study not only involves the comparison among these techniques, but also, the tuning of the meta-parameters in each algorithm. The algorithms have been implemented using the language R. The data base used is obtained from the nation-wide cohort [email protected] study. The conclusions will include the accuracy of each algorithm and therefore the best technique for this problem. The best meta-parameters for each algorithm will be also provided.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    Learning models for semantic classification of insufficient plantar pressure images

    Get PDF
    Establishing a reliable and stable model to predict a target by using insufficient labeled samples is feasible and effective, particularly, for a sensor-generated data-set. This paper has been inspired with insufficient data-set learning algorithms, such as metric-based, prototype networks and meta-learning, and therefore we propose an insufficient data-set transfer model learning method. Firstly, two basic models for transfer learning are introduced. A classification system and calculation criteria are then subsequently introduced. Secondly, a dataset of plantar pressure for comfort shoe design is acquired and preprocessed through foot scan system; and by using a pre-trained convolution neural network employing AlexNet and convolution neural network (CNN)- based transfer modeling, the classification accuracy of the plantar pressure images is over 93.5%. Finally, the proposed method has been compared to the current classifiers VGG, ResNet, AlexNet and pre-trained CNN. Also, our work is compared with known-scaling and shifting (SS) and unknown-plain slot (PS) partition methods on the public test databases: SUN, CUB, AWA1, AWA2, and aPY with indices of precision (tr, ts, H) and time (training and evaluation). The proposed method for the plantar pressure classification task shows high performance in most indices when comparing with other methods. The transfer learning-based method can be applied to other insufficient data-sets of sensor imaging fields

    On the Generalizability and Predictability of Recommender Systems

    Full text link
    While other areas of machine learning have seen more and more automation, designing a high-performing recommender system still requires a high level of human effort. Furthermore, recent work has shown that modern recommender system algorithms do not always improve over well-tuned baselines. A natural follow-up question is, "how do we choose the right algorithm for a new dataset and performance metric?" In this work, we start by giving the first large-scale study of recommender system approaches by comparing 18 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find that the best algorithms and hyperparameters are highly dependent on the dataset and performance metric, however, there are also strong correlations between the performance of each algorithm and various meta-features of the datasets. Motivated by these findings, we create RecZilla, a meta-learning approach to recommender systems that uses a model to predict the best algorithm and hyperparameters for new, unseen datasets. By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application. We not only release our code and pretrained RecZilla models, but also all of our raw experimental results, so that practitioners can train a RecZilla model for their desired performance metric: https://github.com/naszilla/reczilla.Comment: NeurIPS 202
    • …
    corecore