804 research outputs found

    A note on evolutionary stochastic portfolio optimization and probabilistic constraints

    Full text link
    In this note, we extend an evolutionary stochastic portfolio optimization framework to include probabilistic constraints. Both the stochastic programming-based modeling environment as well as the evolutionary optimization environment are ideally suited for an integration of various types of probabilistic constraints. We show an approach on how to integrate these constraints. Numerical results using recent financial data substantiate the applicability of the presented approach

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Get PDF
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Optimization of Index-Based Portfolios

    Get PDF

    An Evolutionary Optimization Approach to Risk Parity Portfolio Selection

    Full text link
    In this paper we present an evolutionary optimization approach to solve the risk parity portfolio selection problem. While there exist convex optimization approaches to solve this problem when long-only portfolios are considered, the optimization problem becomes non-trivial in the long-short case. To solve this problem, we propose a genetic algorithm as well as a local search heuristic. This algorithmic framework is able to compute solutions successfully. Numerical results using real-world data substantiate the practicability of the approach presented in this paper

    Stock Market Portfolio Management: A Walk-through

    Get PDF
    Stock market portfolio management has remained successful in drawing attention of number of researchers from the fields of computer science, finance and mathematics all around the world since years. Successfully managing stock market portfolio is the prime concern for investors and fund managers in the financial markets. This paper is aimed to provide a walk-through to the stock market portfolio management. This paper deals with questions like what is stock market portfolio, how to manage it, what are the objectives behind managing it, what are the challenges in managing it. As each coin has two sides, each portfolio has two elements – risk and return. Regarding this, Markowitz’s Modern Portfolio Theory, or Risk-Return Model, to manage portfolio is analyzed in detail along with its criticisms, efficient frontier, and suggested state-of-the-art enhancements in terms of various constraints and risk measures. This paper also discusses other models to manage stock market portfolio such as Capital Asset Pricing Model (CAPM) and Arbitrage Pricing Theory (APT) Model. DOI: 10.17762/ijritcc2321-8169.150613

    Time-limited Metaheuristics for Cardinality-constrained Portfolio Optimisation

    Full text link
    A financial portfolio contains assets that offer a return with a certain level of risk. To maximise returns or minimise risk, the portfolio must be optimised - the ideal combination of optimal quantities of assets must be found. The number of possible combinations is vast. Furthermore, to make the problem realistic, constraints can be imposed on the number of assets held in the portfolio and the maximum proportion of the portfolio that can be allocated to an asset. This problem is unsolvable using quadratic programming, which means that the optimal solution cannot be calculated. A group of algorithms, called metaheuristics, can find near-optimal solutions in a practical computing time. These algorithms have been successfully used in constrained portfolio optimisation. However, in past studies the computation time of metaheuristics is not limited, which means that the results differ in both quality and computation time, and cannot be easily compared. This study proposes a different way of testing metaheuristics, limiting their computation time to a certain duration, yielding results that differ only in quality. Given that in some use cases the priority is the quality of the solution and in others the speed, time limits of 1, 5 and 25 seconds were tested. Three metaheuristics - simulated annealing, tabu search, and genetic algorithm - were evaluated on five sets of historical market data with different numbers of assets. Although the metaheuristics could not find a competitive solution in 1 second, simulated annealing found a near-optimal solution in 5 seconds in all but one dataset. The lowest quality solutions were obtained by genetic algorithm.Comment: 51 pages, 8 tables, 3 figure
    • …
    corecore