2 research outputs found

    Towards a logical foundation of randomized computation

    Get PDF
    This dissertation investigates the relations between logic and TCS in the probabilistic setting. It is motivated by two main considerations. On the one hand, since their appearance in the 1960s-1970s, probabilistic models have become increasingly pervasive in several fast-growing areas of CS. On the other, the study and development of (deterministic) computational models has considerably benefitted from the mutual interchanges between logic and CS. Nevertheless, probabilistic computation was only marginally touched by such fruitful interactions. The goal of this thesis is precisely to (start) bring(ing) this gap, by developing logical systems corresponding to specific aspects of randomized computation and, therefore, by generalizing standard achievements to the probabilistic realm. To do so, our key ingredient is the introduction of new, measure-sensitive quantifiers associated with quantitative interpretations. The dissertation is tripartite. In the first part, we focus on the relation between logic and counting complexity classes. We show that, due to our classical counting propositional logic, it is possible to generalize to counting classes, the standard results by Cook and Meyer and Stockmeyer linking propositional logic and the polynomial hierarchy. Indeed, we show that the validity problem for counting-quantified formulae captures the corresponding level in Wagner's hierarchy. In the second part, we consider programming language theory. Type systems for randomized \lambda-calculi, also guaranteeing various forms of termination properties, were introduced in the last decades, but these are not "logically oriented" and no Curry-Howard correspondence is known for them. Following intuitions coming from counting logics, we define the first probabilistic version of the correspondence. Finally, we consider the relationship between arithmetic and computation. We present a quantitative extension of the language of arithmetic able to formalize basic results from probability theory. This language is also our starting point to define randomized bounded theories and, so, to generalize canonical results by Buss

    Comparing Constructive Arithmetical Theories Based On NP-PIND and coNP-PIND

    No full text
    In this note we show that the intuitionistic theory of polynomial induction on Π b+ 1-formulas does not imply the intuitionistic theory IS1 2 of polynomial induction on Σ b+ 1-formulas. We also show the converse assuming the Polynomial Hierarchy does not collapse. Similar results hold also for length induction in place of polynomial induction. We also investigate the relation between various other intuitionistic first-order theories of bounded arithmetic. Our method is mostly semantical, we use Kripke models of the theories
    corecore