8,439 research outputs found

    Image and interpretation using artificial intelligence to read ancient Roman texts

    Get PDF
    The ink and stylus tablets discovered at the Roman Fort of Vindolanda are a unique resource for scholars of ancient history. However, the stylus tablets have proved particularly difficult to read. This paper describes a system that assists expert papyrologists in the interpretation of the Vindolanda writing tablets. A model-based approach is taken that relies on models of the written form of characters, and statistical modelling of language, to produce plausible interpretations of the documents. Fusion of the contributions from the language, character, and image feature models is achieved by utilizing the GRAVA agent architecture that uses Minimum Description Length as the basis for information fusion across semantic levels. A system is developed that reads in image data and outputs plausible interpretations of the Vindolanda tablets

    An Arabic Optical Braille Recognition System

    No full text
    Technology has shown great promise in providing access to textual information for visually impaired people. Optical Braille Recognition (OBR) allows people with visual impairments to read volumes of typewritten documents with the help of flatbed scanners and OBR software. This project looks at developing a system to recognize an image of embossed Arabic Braille and then convert it to text. It particularly aims to build fully functional Optical Arabic Braille Recognition system. It has two main tasks, first is to recognize printed Braille cells, and second is to convert them to regular text. Converting Braille to text is not simply a one to one mapping, because one cell may represent one symbol (alphabet letter, digit, or special character), two or more symbols, or part of a symbol. Moreover, multiple cells may represent a single symbol

    Cross-document word matching for segmentation and retrieval of Ottoman divans

    Get PDF
    Cataloged from PDF version of article.Motivated by the need for the automatic indexing and analysis of huge number of documents in Ottoman divan poetry, and for discovering new knowledge to preserve and make alive this heritage, in this study we propose a novel method for segmenting and retrieving words in Ottoman divans. Documents in Ottoman are dif- ficult to segment into words without a prior knowledge of the word. In this study, using the idea that divans have multiple copies (versions) by different writers in different writing styles, and word segmentation in some of those versions may be relatively easier to achieve than in other versions, segmentation of the versions (which are difficult, if not impossible, with traditional techniques) is performed using information carried from the simpler version. One version of a document is used as the source dataset and the other version of the same document is used as the target dataset. Words in the source dataset are automatically extracted and used as queries to be spotted in the target dataset for detecting word boundaries. We present the idea of cross-document word matching for a novel task of segmenting historical documents into words. We propose a matching scheme based on possible combinations of sequence of sub-words. We improve the performance of simple features through considering the words in a context. The method is applied on two versions of Layla and Majnun divan by Fuzuli. The results show that, the proposed word-matching-based segmentation method is promising in finding the word boundaries and in retrieving the words across documents

    Human interaction with digital ink : legibility measurement and structural analysis

    Get PDF
    Literature suggests that it is possible to design and implement pen-based computer interfaces that resemble the use of pen and paper. These interfaces appear to allow users freedom in expressing ideas and seem to be familiar and easy to use. Different ideas have been put forward concerning this type of interface, however despite the commonality of aims and problems faced, there does not appear to be a common approach to their design and implementation. This thesis aims to progress the development of pen-based computer interfaces that resemble the use of pen and paper. To do this, a conceptual model is proposed for interfaces that enable interaction with "digital ink". This conceptual model is used to organize and analyse the broad range of literature related to pen-based interfaces, and to identify topics that are not sufficiently addressed by published research. Two issues highlighted by the model: digital ink legibility and digital ink structuring, are then investigated. In the first investigation, methods are devised to objectively and subjectively measure the legibility of handwritten script. These methods are then piloted in experiments that vary the horizontal rendering resolution of handwritten script displayed on a computer screen. Script legibility is shown to decrease with rendering resolution, after it drops below a threshold value. In the second investigation, the clustering of digital ink strokes into words is addressed. A method of rating the accuracy of clustering algorithms is proposed: the percentage of words spoiled. The clustering error rate is found to vary among different writers, for a clustering algorithm using the geometric features of both ink strokes, and the gaps between them. The work contributes a conceptual interface model, methods of measuring digital ink legibility, and techniques for investigating stroke clustering features, to the field of digital ink interaction research

    Improving Usability and Adoption of Tablet-based Electronic Health Record (EHR) Applications

    Get PDF
    abstract: The technological revolution has caused the entire world to migrate to a digital environment and health care is no exception to this. Electronic Health Records (EHR) or Electronic Medical Records (EMR) are the digital repository for health data of patients. Nation wide efforts have been made by the federal government to promote the usage of EHRs as they have been found to improve quality of health service. Although EHR systems have been implemented almost everywhere, active use of EHR applications have not replaced paper documentation. Rather, they are often used to store transcribed data from paper documentation after each clinical procedure. This process is found to be prone to errors such as data omission, incomplete data documentation and is also time consuming. This research aims to help improve adoption of real-time EHRs usage while documenting data by improving the usability of an iPad based EHR application that is used during resuscitation process in the intensive care unit. Using Cognitive theories and HCI frameworks, this research identified areas of improvement and customizations in the application that were required to exclusively match the work flow of the resuscitation team at the Mayo Clinic. In addition to this, a Handwriting Recognition Engine (HRE) was integrated into the application to support a stylus based information input into EHR, which resembles our target users’ traditional pen and paper based documentation process. The EHR application was updated and then evaluated with end users at the Mayo clinic. The users found the application to be efficient, usable and they showed preference in using this application over the paper-based documentation.Dissertation/ThesisMasters Thesis Computer Science 201

    Two-dimensional penalized signal regression for hand written digit recognition

    Get PDF
    Many attempts have been made to achieve successful recognition of handwritten digits. We report our results of using statistical method on handwritten digit recognition. A digitized handwritten numeral can be represented by an image with grayscales. The image includes features that are mapped into two-dimensional space with row and column coordinates. Based on this structure, two-dimensional penalized signal logistic regression (PSR) is applied to the recognition of handwritten digits. The data set is taken from the USPS zip code database that contains 7219 training images and 2007 test images. All the images have been deslanted and normalized into 16 x 16 pixels with various grayscales. The PSR method constructs a coefficient surface using a rich two-dimensional tensor product B-splines basis, so that the surface is more flexible than needed. We then penalize roughness of the coefficient surface with difference penalties on each coefficient associate with the rows and columns of the tensor product B-splines. The optimal penalty weight is found in several minutes of iterative operations. A competitive overall recognition error rate of 8.97% on the test data set was achieved. We will also review an artificial neural network approach for comparison. By using PSR, it requires neither long learning time nor large memory resources. Another advantage of the PSR method is that our results are obtained on the original USPS data set without any further image preprocessing. We also found that PSR algorithm was very capable to cope with high diversity and variation that were two major features of handwritten digits
    • …
    corecore