269 research outputs found

    Comparing 3D descriptors for local search of craniofacial landmarks

    Get PDF
    This paper presents a comparison of local descriptors for a set of 26 craniofacial landmarks annotated on 144 scans acquired in the context of clinical research. We focus on the accuracy of the different descriptors on a per-landmark basis when constrained to a local search. For most descriptors, we find that the curves of expected error against the search radius have a plateau that can be used to characterize their performance, both in terms of accuracy and maximum usable range for the local search. Six histograms-based descriptors were evaluated: three describing distances and three describing orientations. No descriptor dominated over the rest and the best accuracy per landmark was strongly distributed among 3 of the 6 algorithms evaluated. Ordering the descriptors by average error (over all landmarks) did not coincide with the ordering by most frequently selected, indicating that a comparison of descriptors based on their global behavior might be misleading when targeting facial landmarks

    Rotationally invariant 3D shape contexts using asymmetry patterns

    Get PDF
    This paper presents an approach to resolve the azimuth ambiguity of 3D Shape Contexts (3DSC) based on asymmetry patterns. We show that it is possible to provide rotational invariance to 3DSC at the expense of a marginal increase in computational load, outperforming previous algorithms dealing with the azimuth ambiguity. We build on a recently presented measure of approximate rotational symmetry in 2D defined as the overlapping area between a shape and rotated versions of itself to extract asymmetry patterns from a 3DSC in a variety of ways, depending on the spatial relationships that need to be highlighted or disabled. Thus, we define Asymmetry Patterns Shape Contexts (APSC) from a subset of the possible spatial relations present in the spherical grid of 3DSC; hence they can be thought of as a family of descriptors that depend on the subset that is selected. This provides great flexibility to derive different descriptors. We show that choosing the appropriate spatial patterns can considerably reduce the errors obtained with 3DSC when targeting specific types of points

    Compensating inaccurate annotations to train 3D facial landmark localisation models

    Get PDF
    In this paper we investigate the impact of inconsistency in manual annotations when they are used to train automatic models for 3D facial landmark localization. We start by showing that it is possible to objectively measure the consistency of annotations in a database, provided that it contains replicates (i.e. repeated scans from the same person). Applying such measure to the widely used FRGC database we find that manual annotations currently available are suboptimal and can strongly impair the accuracy of automatic models learnt therefrom. To address this issue, we present a simple algorithm to automatically correct a set of annotations and show that it can help to significantly improve the accuracy of the models in terms of landmark localization errors. This improvement is observed even when errors are measured with respect to the original (not corrected) annotations. However, we also show that if errors are computed against an alternative set of manual annotations with higher consistency, the accuracy of the models constructed using the corrections from the presented algorithm tends to converge to the one achieved by building the models on the alternative,more consistent set

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    3D facial landmark localization using combinatorial search and shape regression

    Get PDF
    This paper presents a method for the automatic detection of facial landmarks. The algorithm receives a set of 3D candidate points for each landmark (e.g. from a feature detector) and performs combinatorial search constrained by a deformable shape model. A key assumption of our approach is that for some landmarks there might not be an accurate candidate in the input set. This is tackled by detecting partial subsets of landmarks and inferring those that are missing so that the probability of the deformable model is maximized. The ability of the model to work with incomplete information makes it possible to limit the number of candidates that need to be retained, substantially reducing the number of possible combinations to be tested with respect to the alternative of trying to always detect the complete set of landmarks. We demonstrate the accuracy of the proposed method in a set of 144 facial scans acquired by means of a hand-held laser scanner in the context of clinical craniofacial dysmorphology research. Using spin images to describe the geometry and targeting 11 facial landmarks, we obtain an average error below 3 mm, which compares favorably with other state of the art approaches based on geometric descriptors

    Cleft Palate Craniofac J

    Get PDF
    ObjectiveWith the current widespread use of 3D facial surface imaging in clinical and research environments, there is a growing demand for high quality craniofacial norms based on 3D imaging technology. The principal goal of the 3D Facial Norms (3DFN) project was to create an interactive, web-based repository of 3D facial images and measurements. Unlike other repositories, users can gain access to both summary-level statistics as well as individual-level data, including 3D facial landmark coordinates, 3D-derived anthropometric measurements, 3D facial surface images and genotypes from every individual in the dataset. The 3DFN database currently consists of 2454 male and female participants ranging in age from 3\u201340 years. These subjects were recruited at four US sites and screened for a history of craniofacial conditions. The goal of this paper is to introduce readers to the 3DFN repository by providing a general overview of the project, explaining the rationale behind the creation of the database, and describing the methods used to collect the data.SupplementSex and age-specific summary statistics (means and standard deviations) and growth curves for every anthropometric measurement in the 3DFN dataset are provided as a supplement. These summary statistics and growth curves can aid clinicians in the assessment of craniofacial dysmorphology.U01 DE020078/DE/NIDCR NIH HHS/United StatesR01 DE016148/DE/NIDCR NIH HHS/United StatesUL1 TR000423/TR/NCATS NIH HHS/United StatesR01 DD000295/DD/NCBDD CDC HHS/United StatesU01 DE020057/DE/NIDCR NIH HHS/United States2017-11-01T00:00:00Z26492185PMC4841760vault:1687

    Geometric Expression Invariant 3D Face Recognition using Statistical Discriminant Models

    No full text
    Currently there is no complete face recognition system that is invariant to all facial expressions. Although humans find it easy to identify and recognise faces regardless of changes in illumination, pose and expression, producing a computer system with a similar capability has proved to be particularly di cult. Three dimensional face models are geometric in nature and therefore have the advantage of being invariant to head pose and lighting. However they are still susceptible to facial expressions. This can be seen in the decrease in the recognition results using principal component analysis when expressions are added to a data set. In order to achieve expression-invariant face recognition systems, we have employed a tensor algebra framework to represent 3D face data with facial expressions in a parsimonious space. Face variation factors are organised in particular subject and facial expression modes. We manipulate this using single value decomposition on sub-tensors representing one variation mode. This framework possesses the ability to deal with the shortcomings of PCA in less constrained environments and still preserves the integrity of the 3D data. The results show improved recognition rates for faces and facial expressions, even recognising high intensity expressions that are not in the training datasets. We have determined, experimentally, a set of anatomical landmarks that best describe facial expression e ectively. We found that the best placement of landmarks to distinguish di erent facial expressions are in areas around the prominent features, such as the cheeks and eyebrows. Recognition results using landmark-based face recognition could be improved with better placement. We looked into the possibility of achieving expression-invariant face recognition by reconstructing and manipulating realistic facial expressions. We proposed a tensor-based statistical discriminant analysis method to reconstruct facial expressions and in particular to neutralise facial expressions. The results of the synthesised facial expressions are visually more realistic than facial expressions generated using conventional active shape modelling (ASM). We then used reconstructed neutral faces in the sub-tensor framework for recognition purposes. The recognition results showed slight improvement. Besides biometric recognition, this novel tensor-based synthesis approach could be used in computer games and real-time animation applications
    corecore