13 research outputs found

    Analysis of WIMAX/BWA Licensing in India: A real option approach

    Get PDF
    Indian Internet and broadband market has experienced very slow growth and limited penetration till now. The introduction of Broadband Wireless Access (BWA) is expected to aid in increasing the penetration of internet and broadband in India. The report sheds light on the guidelines and procedure used in 4G/BWA spectrum auction and presents comparative analysis of the competing technologies, providing the information about suitability of each technology available. Recently held 4G/ BWA spectrum auction saw enthusiastic participation by the industry and even saw some new entrants in Indian broadband market. Government benefited by Rs, 385bn that it earned as revenue from the auction of the spectrum and projected it as successful auction. However, the question remains if the auctions were efficient and whether they led to creation of value or will it prove to be burden to the telecom operators and will depress their balance sheet for years to come. The report uses both traditional valuation methods such as Discounted Cash Flow as well as Real Option approach to answer such questions. Using DCF analysis, the broadband subscribers have been forecasted to grow from present 13.77mn to 544mn by the end of 2025. The wireless subscribers are forecasted to be 70% of the total broadband subscribers after 5 years of roll out as it will be difficult to replace all wireline subscribers with wireless subscribers in India due to the high cost of wireless broadband and new technology. WiMAX is expected to increase its presence with time and reach 90mn subscribers from meager 0.35mn subscribers by 2025. Using industry wide cost of capital as 12.05%, the Net Present Value has been found Rs 221bn aggregate with an IRR of 17.1%. Using Real option approach, the value of license has been calculated as Rs 437bn which is 13.5% more than the spectrum fees paid by the operators. This mismatch, between the auction value and the correct value that should have been discovered by supply-demand dynamics, can be due to limited participants in BWA spectrum auctions and companies such as TATA and Reliance opting out of the auction process midway as well as uncertainty about acceptance of new technology with Indian subscribers.WiMAX, broadband, 3G spectrum, 4G,broadband wireless access, valuation, licensing, real option

    Analysis of WIMAX/BWA Licensing in India: A real option approach

    Get PDF
    Indian Internet and broadband market has experienced very slow growth and limited penetration till now. The introduction of Broadband Wireless Access (BWA) is expected to aid in increasing the penetration of internet and broadband in India. The report sheds light on the guidelines and procedure used in 4G/BWA spectrum auction and presents comparative analysis of the competing technologies, providing the information about suitability of each technology available. Recently held 4G/ BWA spectrum auction saw enthusiastic participation by the industry and even saw some new entrants in Indian broadband market. Government benefited by Rs, 385bn that it earned as revenue from the auction of the spectrum and projected it as successful auction. However, the question remains if the auctions were efficient and whether they led to creation of value or will it prove to be burden to the telecom operators and will depress their balance sheet for years to come. The report uses both traditional valuation methods such as Discounted Cash Flow as well as Real Option approach to answer such questions. Using DCF analysis, the broadband subscribers have been forecasted to grow from present 13.77mn to 544mn by the end of 2025. The wireless subscribers are forecasted to be 70% of the total broadband subscribers after 5 years of roll out as it will be difficult to replace all wireline subscribers with wireless subscribers in India due to the high cost of wireless broadband and new technology. WiMAX is expected to increase its presence with time and reach 90mn subscribers from meager 0.35mn subscribers by 2025. Using industry wide cost of capital as 12.05%, the Net Present Value has been found Rs 221bn aggregate with an IRR of 17.1%. Using Real option approach, the value of license has been calculated as Rs 437bn which is 13.5% more than the spectrum fees paid by the operators. This mismatch, between the auction value and the correct value that should have been discovered by supply-demand dynamics, can be due to limited participants in BWA spectrum auctions and companies such as TATA and Reliance opting out of the auction process midway as well as uncertainty about acceptance of new technology with Indian subscribers

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world

    Study of UHF and VHF Compact Antennas

    Get PDF
    This thesis presents and describes designs of small antennas that operate in UHF and VHF frequency bands. The proposed antennas are designed for integration into small volumes, therefore low profile, compact size and good radiation properties are the key parameters in this work. A further investigation on miniaturization techniques, as well as the ground plane effects on the general performance, is also made. The main objective is the design of novel compact sized geometries, lightweight and cost efficient, operating in the lower UHF and VHF frequency bands. The groundplane size and the antenna position with respect to it, are two parameters which are investigated and contribute to optimum design performance. Compact solutions are realised in this work based on folded, meander-line and inverted-F geometries providing broadband operation and omnidirectional radiation properties. The investigation of broadband properties of a dual band folded monopole led to a controllable frequency-ratio with wide range, operating in the WLAN frequency spectrum. The proposed solution offers high efficiency and gain and stable omnidirectionality across the operating frequency band. The study also deals with planar inverted-F antennas (PIFA) operating in the LTE frequency bands. The two highly efficient broadband antennas provide compactness, gain stability and are fabricated using low-cost materials. By configuring an optimised position of the PIFA on the groundplane, the impedance bandwidth, the gain and the total efficiency can be significantly improved. A more compact solution of a dual band PIFA structure is provided with omnidirectional radiation characteristics and large frequency ratio for machine-to-machine applications. A novel tuneable meander line structure operating over the frequency range of 412 − 475 MHz is designed for integration into smart meter devices. The resonant frequency of this antenna can be tuned using a sliding via connector. A matching stub is introduced into the proposed geometry to improve the impedance matching and to shift the resonant frequency to lower values. This innovative solution overcomes material loading problems when installed on a concrete wall, as well as the S11 characteristic are not impaired with the small sized ground plane. Finally, a dual band meander line folded monopole antenna in the lower UHF and VHF frequency bands is proposed for smart metering and Wireless M-Bus applications. The miniaturization of the proposed solution is based on a double-sided meandering structure which also offers good isolation between the two sections and an easily controlled large frequency-ratio. The introduction of a shunt lumped inductor improves the impedance matching at both frequencies. The antenna despite its compact size offers high total efficiency and gain across the operating frequency bands

    Improving initiation, decision and execution phases for vertical handover in heterogeneous wireless mobile networks

    Get PDF
    One of the challenging issues in Next Generation Wireless Systems (NGWS) is seamless Vertical Handover (VHO) during the mobility between different types of technologies (3GPP and non-3GPP) such as Global System for Mobile Communication (GSM), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE). Therefore, the telecommunication operators are required to develop aninteroperability strategy for these different types of existing networks to get the best connection anywhere, anytime without interruption of the ongoing sessions. In order to identify this problem accurately, the research study presented in this thesis provides four surveys about VHO approaches found in the literature. In these surveys, we classify the existing VHO approaches into categories based on the available VHO techniques for which we present their objectives and performances issues. After that, we propose an optimised VHO approach based on the VHO approaches that have been studied in the literature and take into consideration the research problems and conclusions which arearisen in our surveys. The proposed approach demonstrates better performance (packet loss, latency and signaling cost), less VHO connection failure (probability of minimising VHO reject sessions), less complexity and an enhanced VHO compared with that foundin the literature. It consists of a procedure which is implemented by an algorithm. The proposed procedure of loose coupling and Mobile Internet Protocol version 4 (MIPv4) provides early buffering for new data packets to minimise VHO packet loss and latency. Analysis and simulation of the proposed procedure show that the VHO packet loss and latency are significantly reduced compared with previous MIPv6 procedures found in the literature.The proposed algorithm is composed of two main parts: Handover Initiation and Optimum Radio Access Technologies (RATs) list of priority. The first part includes two main types of VHO and gives priority to imperative sessions over alternative sessions. IIIThis part is also responsible for deciding when and where to perform the handover by choosing the best RATs from the multiple ones available. Then, it passes them to the decision phase. This results in reducing the signaling cost and the inevitable degradation in Quality of Service (QoS) as a result of avoiding unnecessary handover processes. The second part defines RATs list of priority to minimise VHO connection failure. Analysis and simulation based performance evaluations then demonstrate that the proposed algorithm outperforms the traditional algorithms in terms of: (a) the probability of VHOconnection failure as a result of using the optimum RATs list of priority and (b) thesignaling cost and the inevitable degradation in QoS as a result of avoiding unnecessary handover processes

    Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

    Get PDF
    Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The mobile Internet report

    Get PDF
    Key ponts Material wealth creation / destruction should surpass earlier computing cycles. The mobile Internet cycle, the 5th cycle in 50 years, is just starting. Winners in each cycle often create more market capitalization than in the last. New winners emerge, some incumbents survive – or thrive – while many past winners falter. The mobile Internet is ramping faster than desktop Internet did, and we believe more users may connect to the Internet via mobile devices than desktop PCs within 5 years. Five IP-based products / services are growing / converging and providing the underpinnings for dramatic growth in mobile Internet usage – 3G adoption + social networking + video + VoIP + impressive mobile devices. Apple + Facebook platforms serving to raise the bar for how users connect / communicate – their respective ramps in user and developer engagement may be unprecedented. Decade-plus Internet usage / monetization ramps for mobile Internet in Japan plus desktop Internet in developed markets provide roadmaps for global ramp and monetization. Massive mobile data growth is driving transitions for carriers and equipment providers. Emerging markets have material potential for mobile Internet user growth. Low penetration of fixed-line telephone and already vibrant mobile value-added services mean that for many EM users and SMEs, the Internet will be mobile
    corecore