8,806 research outputs found

    Faster Motion on Cartesian Paths Exploiting Robot Redundancy at the Acceleration Level

    Get PDF
    The problem of minimizing the transfer time along a given Cartesian path for redundant robots can be approached in two steps, by separating the generation of a joint path associated to the Cartesian path from the exact minimization of motion time under kinematic/dynamic bounds along the obtained parameterized joint path. In this framework, multiple suboptimal solutions can be found, depending on how redundancy is locally resolved in the joint space within the first step. We propose a solution method that works at the acceleration level, by using weighted pseudoinversion, optimizing an inertia-related criterion, and including null-space damping. Several numerical results obtained on different robot systems demonstrate consistently good behaviors and definitely faster motion times in comparison with related methods proposed in the literature. The motion time obtained with our method is reasonably close to the global time-optimal solution along same Cartesian path. Experimental results on a KUKA LWR IV are also reported, showing the tracking control performance on the executed motions

    A technique based on adaptive extended jacobians for improving the robustness of the inverse numerical kinematics of redundant robots

    Get PDF
    The extended Jacobian is a technique for solving the redundancy of redundant robots. It is based on the definition of secondary tasks, through constraint functions that are added to the mapping between joint rates and end-effector's twist. Several approaches showed its potential, applications, and limitations. In general, the constraint functions are a linear combination of basic functions with constant coefficients. This paper proposes the use of adaptive coefficients in such functions by using the conditioning index of the extended Jacobian as a quality measure. A good conditioning index of the extended Jacobian keeps the robot far from singularities and contributes to the solution of the inverse kinematics. In this paper, initially, the extended Jacobian and the proposed algorithm are discussed, and then, two tests in different circumstances are presented in order to validate the proposal

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1

    Simplified Motion Control of a Vehicle manipulator for the Coordinated Mobile Manipulation

    Get PDF
    This paper considers a resolved kinematic motion control approach for controlling a spatial serial manipulator arm that is mounted on a vehicle base. The end-effector’s motion of the manipulator is controlled by a novel kinematic control scheme, and the performance is compared with the well-known operational-space control scheme. The proposed control scheme aims to track the given operational-space (end-effector) motion trajectory with the help of resolved configuration-space motion without using the Jacobian matrix inverse or pseudo inverse. The experimental testing results show that the suggested control scheme is as close to the conventional operational-space kinematic control scheme

    Optimal redundancy control for robot manipulators

    Get PDF
    Optimal control for kinematically redundant robots is addressed for two different optimization problems. In the first optimization problem, we consider the minimization of the transfer time along a given Cartesian path for a redundant robot. This problem can be solved in two steps, by separating the generation of a joint path associated to the Cartesian path from the exact minimization of motion time under kinematic/dynamic bounds along the obtained parametrized joint path. In this thesis, multiple sub-optimal solutions can be found, depending on how redundancy is locally resolved in the joint space within the first step. A solution method that works at the acceleration level is proposed, by using weighted pseudoinversion, optimizing an inertia-related criterion, and including null-space damping. The obtained results demonstrate consistently good behaviors and definitely faster motion times in comparison with related methods proposed in the literature. The motion time obtained with the proposed method is close to the global time-optimal solution along the same Cartesian path. Furthermore, a reasonable tracking control performance is obtained on the experimental executed motions. In the second optimization problem, we consider the known phenomenon of torque oscillations and motion instabilities that occur in redundant robots during the execution of sufficiently long Cartesian trajectories when the joint torque is instantaneously minimized. In the framework of on-line local redundancy resolution methods, we propose basic variations of the minimum torque scheme to address this issue. Either the joint torque norm is minimized over two successive discrete-time samples using a short preview window, or we minimize the norm of the difference with respect to a desired momentum-damping joint torque, or the two schemes are combined together. The resulting local control methods are all formulated as well-posed linear-quadratic problems, and their closed-form solutions generate also low joint velocities while addressing the primary torque optimization objectives. Stable and consistent behaviors are obtained along short or long Cartesian position trajectories. For the two addressed optimization problems in this thesis, the results are obtained using three different robot systems, namely a 3R planar arm, a 6R Universal Robots UR10, and a 7R KUKA LWR robot

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 195

    Get PDF
    This bibliography lists 148 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1979

    An astrometric facility for planetary detection on the space station

    Get PDF
    An Astrometric Telescope Facility (ATF) for planetary detection is being studied as a potential space station initial operating capability payload. The primary science objective of this mission is the detection and study of planetary systems around other stars. In addition, the facility will be capable of other astrometric measurements such as stellar motions of other galaxies and highly precise direct measurement of stellar distance within the Milky Way Galaxy. The results of a recently completed ATF preliminary systems definition study are summarized. Results of this study indicate that the preliminary concept for the facility is fully capable of meeting the science objective without the development of any new technologies. A simple straightforward operations approach was developed for the ATF. A real-time facility control is not normally required, but does maintain a near real-time ground monitoring capability for the facility and science data stream on a full-time basis. Facility observational sequences are normally loaded once a week. In addition, the preliminary system is designed to be fail-safe and single-fault tolerant. Routine interactions by the space station crew with the ATF will not be necessary, but onboard controls are provided for crew override as required for emergencies and maintenance

    Practical implementation of nonlinear time series methods: The TISEAN package

    Full text link
    Nonlinear time series analysis is becoming a more and more reliable tool for the study of complicated dynamics from measurements. The concept of low-dimensional chaos has proven to be fruitful in the understanding of many complex phenomena despite the fact that very few natural systems have actually been found to be low dimensional deterministic in the sense of the theory. In order to evaluate the long term usefulness of the nonlinear time series approach as inspired by chaos theory, it will be important that the corresponding methods become more widely accessible. This paper, while not a proper review on nonlinear time series analysis, tries to make a contribution to this process by describing the actual implementation of the algorithms, and their proper usage. Most of the methods require the choice of certain parameters for each specific time series application. We will try to give guidance in this respect. The scope and selection of topics in this article, as well as the implementational choices that have been made, correspond to the contents of the software package TISEAN which is publicly available from http://www.mpipks-dresden.mpg.de/~tisean . In fact, this paper can be seen as an extended manual for the TISEAN programs. It fills the gap between the technical documentation and the existing literature, providing the necessary entry points for a more thorough study of the theoretical background.Comment: 27 pages, 21 figures, downloadable software at http://www.mpipks-dresden.mpg.de/~tisea
    • …
    corecore