6,298 research outputs found

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    Optimized kernel minimum noise fraction transformation for hyperspectral image classification

    Get PDF
    This paper presents an optimized kernel minimum noise fraction transformation (OKMNF) for feature extraction of hyperspectral imagery. The proposed approach is based on the kernel minimum noise fraction (KMNF) transformation, which is a nonlinear dimensionality reduction method. KMNF can map the original data into a higher dimensional feature space and provide a small number of quality features for classification and some other post processing. Noise estimation is an important component in KMNF. It is often estimated based on a strong relationship between adjacent pixels. However, hyperspectral images have limited spatial resolution and usually have a large number of mixed pixels, which make the spatial information less reliable for noise estimation. It is the main reason that KMNF generally shows unstable performance in feature extraction for classification. To overcome this problem, this paper exploits the use of a more accurate noise estimation method to improve KMNF. We propose two new noise estimation methods accurately. Moreover, we also propose a framework to improve noise estimation, where both spectral and spatial de-correlation are exploited. Experimental results, conducted using a variety of hyperspectral images, indicate that the proposed OKMNF is superior to some other related dimensionality reduction methods in most cases. Compared to the conventional KMNF, the proposed OKMNF benefits significant improvements in overall classification accuracy

    Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data

    Get PDF
    Hyperspectral data allows the construction of more elaborate models to sample the properties of the nonferrous materials than the standard RGB color representation. In this paper, the nonferrous waste materials are studied as they cannot be sorted by classical procedures due to their color, weight and shape similarities. The experimental results presented in this paper reveal that factors such as the various levels of oxidization of the waste materials and the slight differences in their chemical composition preclude the use of the spectral features in a simplistic manner for robust material classification. To address these problems, the proposed FUSSER (fuzzy spectral and spatial classifier) algorithm detailed in this paper merges the spectral and spatial features to obtain a combined feature vector that is able to better sample the properties of the nonferrous materials than the single pixel spectral features when applied to the construction of multivariate Gaussian distributions. This approach allows the implementation of statistical region merging techniques in order to increase the performance of the classification process. To achieve an efficient implementation, the dimensionality of the hyperspectral data is reduced by constructing bio-inspired spectral fuzzy sets that minimize the amount of redundant information contained in adjacent hyperspectral bands. The experimental results indicate that the proposed algorithm increased the overall classification rate from 44% using RGB data up to 98% when the spectral-spatial features are used for nonferrous material classification

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Restoration of Oyster (Crassostrea virginica) Habitat for Multiple Estuarine Species Benefits

    Get PDF
    Increase in nitrogen concentration and declining eelgrass beds in Great Bay Estuary have been observed in the last decades. These two parameters are clear indicators of the impending problems for NH’s estuaries. The NH Department of Environmental Services (DES) in collaboration with the New Hampshire Estuaries Project (NHEP) adopted the assumption that eelgrass survival can be used as the water quality target for nutrient criteria development for NH’s estuaries. One of the hypotheses put forward regarding eelgrass decline is that a possible eutrophication response to nutrient increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, which has reduced eelgrass area in Great Bay Estuary. To test this hypothesis, mapping of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. A hyperspectral imagery was conducted by SpecTIR in August 2007 using an AISA Eagle sensor. The collected dataset was used to map eelgrass and nuisance macroalgae throughout the Great Bay Estuary. This report outlines the configured procedure for mapping the macroalgae and eelgrass beds using hyperspectral imagery. No ground truth measurements of eelgrass or macroalgae were collected as part of this project, although eelgrass ground truth data was collected as part of a separate project. Guidance from eelgrass and macroalgae experts was used for identifying training sets and evaluating the classification results. The results produced a comprehensive eelgrass and macroalgae map of the estuary. Three recommendations are suggested following the experience gained in this study: conducting ground truth measurements at the time of the HS survey, acquiring the current DEM model of Great Bay Estuary, and examining additional HS datasets with expert eelgrass and macroalgae guidance. These three issues can improve the classification results and allow more advanced applications, such as identification of macroalgae types

    Macroalgae and eelgrass mapping in Great Bay Estuary using AISA hyperspectral imagery

    Get PDF
    Increase in nitrogen concentration and declining eelgrass beds in Great Bay Estuary have been observed in the last decades. These two parameters are clear indicators of the impending problems for NH’s estuaries. The NH Department of Environmental Services (DES) in collaboration with the New Hampshire Estuaries Project (NHEP) adopted the assumption that eelgrass survival can be used as the water quality target for nutrient criteria development for NH’s estuaries. One of the hypotheses put forward regarding eelgrass decline is that a possible eutrophication response to nutrient increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, which has reduced eelgrass area in Great Bay Estuary. To test this hypothesis, mapping of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. A hyperspectral imagery was conducted by SpecTIR in August 2007 using an AISA Eagle sensor. The collected dataset was used to map eelgrass and nuisance macroalgae throughout the Great Bay Estuary. This report outlines the configured procedure for mapping the macroalgae and eelgrass beds using hyperspectral imagery. No ground truth measurements of eelgrass or macroalgae were collected as part of this project, although eelgrass ground truth data was collected as part of a separate project. Guidance from eelgrass and macroalgae experts was used for identifying training sets and evaluating the classification results. The results produced a comprehensive eelgrass and macroalgae map of the estuary. Three recommendations are suggested following the experience gained in this study: conducting ground truth measurements at the time of the HS survey, acquiring the current DEM model of Great Bay Estuary, and examining additional HS datasets with expert eelgrass and macroalgae guidance. These three issues can improve the classification results and allow more advanced applications, such as identification of macroalgae types

    Limitations of Principal Component Analysis for Dimensionality-Reduction for Classification of Hyperspectral Data

    Get PDF
    It is a popular practice in the remote-sensing community to apply principal component analysis (PCA) on a higher-dimensional feature space to achieve dimensionality-reduction. Several factors that have led to the popularity of PCA include its simplicity, ease of use, availability as part of popular remote-sensing packages, and optimal nature in terms of mean square error. These advantages have prompted the remote-sensing research community to overlook many limitations of PCA when used as a dimensionality-reduction tool for classification and target-detection applications. This thesis addresses the limitations of PCA when used as a dimensionality-reduction technique for extracting discriminating features from hyperspectral data. Theoretical and experimental analyses are presented to demonstrate that PCA is not necessarily an appropriate feature-extraction method for high-dimensional data when the objective is classification or target-recognition. The influence of certain data-distribution characteristics, such as within-class covariance, between-class covariance, and correlation on PCA transformation, is analyzed in this thesis. The classification accuracies obtained using PCA features are compared to accuracies obtained using other feature-extraction methods like variants of Karhunen-Loève transform and greedy search algorithms on spectral and wavelet domains. Experimental analyses are conducted for both two-class and multi-class cases. The classification accuracies obtained from higher-order PCA components are compared to the classification accuracies of features extracted from different regions of the spectrum. The comparative study done on the classification accuracies that are obtained using above feature-extraction methods, ascertain that PCA may not be an appropriate tool for dimensionality-reduction of certain hyperspectral data-distributions, when the objective is classification or target-recognition
    corecore