5,850 research outputs found

    Optimal greenhouse cultivation control: survey and perspectives

    Get PDF
    Abstract: A survey is presented of the literature on greenhouse climate control, positioning the various solutions and paradigms in the framework of optimal control. A separation of timescales allows the separation of the economic optimal control problem of greenhouse cultivation into an off-line problem at the tactical level, and an on-line problem at the operational level. This paradigm is used to classify the literature into three categories: focus on operational control, focus on the tactical level, and truly integrated control. Integrated optimal control warrants the best economical result, and provides a systematic way to design control systems for the innovative greenhouses of the future. Research issues and perspectives are listed as well

    A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy

    Get PDF
    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system

    Understanding the Electricity-Water-Climate Change Nexus Using a Stochastic Optimization Approach

    Get PDF
    Climate change has been shown to cause droughts (among other catastrophic weather events) and it is shown to be exacerbated by the increasing levels of greenhouse gas emissions on our planet. In May 2013, CO2 daily average concentration over the Pacific Ocean at Mauna Loa Observatory reached a dangerous milestone of 400 ppm, which has not been experienced in thousands of years in the earth\u27s climate. These levels were attributed to the ever-increasing human activity over the last 5-6 decades. Electric power generators are documented by the U.S. Department of Energy to be the largest users of ground and surface water and also to be the largest emitters of carbon dioxide and other greenhouse gases. Water shortages and droughts in some parts of the U.S. and around the world are becoming a serious concern to independent system operators in wholesale electricity markets. Water shortages can cause significant challenges in electricity production having a direct socioeconomic impact on surrounding regions. Several researchers and institutes around the world have highlighted the fact that there exists an inextricable nexus between electricity, water, and climate change. However, there are no existing quantitative models that study this nexus. This dissertation aims to ll this vacuum. This research presents a new comprehensive quantitative model that studies the electricity-water-climate change nexus. The first two parts of the dissertation focuses on investigating the impact of a joint CO2 emissions and H2O usage tax on a sample electric power network. The latter part of the dissertation presents a model that can be used to study the impact of a joint CO2 and H2O cap-and-trade program on a power grid. We adopt a competitive Markov decision process (CMDP) approach to model the dynamic daily competition in wholesale electricity markets, and solve the resulting model using a reinforcement learning approach. In the first part, we study the impacts of dierent tax mechanisms using exogenous tax rate values found in the literature. We consider the complexities of a electricity power network by using a standard direct-current optimal power flow formulation. In the second part, we use a response surface optimization approach to calculate optimal tax rates for CO2 emissions and H2O usage, and then we examine the impacts of implementing this optimal tax on a power grid. In this part, we use a multi-objective variant of the optimal power flow formulation and solve it using a strength Pareto evolutionary algorithm. We use a 30-bus IEEE power network to perform our detailed simulations and analyses. We study the impacts of implementing the tax policies under several realistic scenarios such as the integration of wind energy, stochastic nature of wind energy, integration of PV energy, water supply disruptions, adoption of water saving technologies, tax credits to generators investing in water saving technologies, and integration of Hydro power generation. The third part, presents a variation of our stochastic optimization framework to model a joint CO2 and H2O cap-and-trade program in wholesale electricity markets for future research. Results from the research show that for the 30-bus power grid, transition from coal generation to wind power could reduce CO2 emissions by 60% and water usage about 40% over a 10-year horizon. Electricity prices increase with the adoption of water and carbon taxes; likewise, capacity disruptions also cause electricity prices to increase

    Using numerical plant models and phenotypic correlation space to design achievable ideotypes

    Full text link
    Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of a set of plant traits resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of a performance criteria (e.g. yield, light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modeling approach, which identified paths for desirable trait modification, including direction and intensity.Comment: 25 pages, 5 figures, 2017, Plant, Cell and Environmen

    A multi-objective differential evolutionary algorithm for optimal sustainable pavement maintenance plan at the network level

    Get PDF
    Sustainable highway pavement maintenance is important for achieving sustainability in the transportation sector. Because the three aspects included in sustainability metrics (environment, economy, and society) often contradict each other, maximising the sustainability performance of highway pavements is difficult, especially at the network level. This study developed a novel multi-objective heuristic algorithm to formulate sustainable highway pavement network maintenance plans considering carbon emissions (CE), life cycle agency cost (LCAC), and pavement long-term performance (LTP). The proposed algorithm is a new variant of multi-objective differential evolution (MODE) that incorporates self-adaptive parameter control and hybrid mutation strategies embedded in its framework (MOSHDE). Three state-of-the-art multi-objective heuristics, namely, the non-dominated sorting genetic algorithm II(NSGA-II), classic MODE, and multi-objective particle swarm optimisation (MOPSO), as well as the proposed MOSHDE, were applied to an existing highway pavement network in China for performance evaluation. Compared with other heuristic algorithms, the proposed self-adaptive parameter control strategy enables the automatic adjustment of the control parameters, avoiding the time-consuming process of selecting them and enhancing the robustness and applicability of differential evolution. The hybrid mutation strategy uses both exploration and exploitation operators for the mutation operations, thus leveraging both global and local searches. The results of the numerical experiment demonstrate that MOSHDE outperforms the other tested heuristics in terms of efficiency and quality and diversity of the obtained approximate Pareto set. The optimal solutions obtained by the proposed method correspond to a proactive maintenance policy, as opposed to the reactive maintenance policy commonly adopted in current practice. In addition, these solutions are more cost-effective and environmentally friendly and can provide better pavement performance to highway users over the project life cycle. Therefore, the proposed MOSHDE may help practitioners in the transportation sector make their highway infrastructure more sustainable

    4E analysis of a two-stage refrigeration system through surrogate models based on response surface methods and hybrid grey wolf optimizer

    Get PDF
    Refrigeration systems are complex, non-linear, multi-modal, and multi-dimensional. However, traditional methods are based on a trial and error process to optimize these systems, and a global optimum operating point cannot be guaranteed. Therefore, this work aims to study a two-stage vapor compression refrigeration system (VCRS) through a novel and robust hybrid multi-objective grey wolf optimizer (HMOGWO) algorithm. The system is modeled using response surface methods (RSM) to investigate the impacts of design variables on the set responses. Firstly, the interaction between the system components and their cycle behavior is analyzed by building four surrogate models using RSM. The model fit statistics indicate that they are statistically significant and agree with the design data. Three conflicting scenarios in bi-objective optimization are built focusing on the overall system following the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP) decision-making methods. The optimal solutions indicate that for the first to third scenarios, the exergetic efficiency (EE) and capital expenditure (CAPEX) are optimized by 33.4% and 7.5%, and the EE and operational expenditure (OPEX) are improved by 27.4% and 19.0%. The EE and global warming potential (GWP) are also optimized by 27.2% and 19.1%, where the proposed HMOGWO outperforms the MOGWO and NSGA-II. Finally, the K-means clustering technique is applied for Pareto characterization. Based on the research outcomes, the combined RSM and HMOGWO techniques have proved an excellent solution to simulate and optimize two-stage VCRS

    Multi-Objective Optimization for Value-Sensitive and Sustainable Basket Recommendations

    Full text link
    Sustainable consumption aims to minimize the environmental and societal impact of the use of services and products. Over-consumption of services and products leads to potential natural resource exhaustion and societal inequalities as access to goods and services becomes more challenging. In everyday life, a person can simply achieve more sustainable purchases by drastically changing their lifestyle choices and potentially going against their personal values or wishes. Conversely, achieving sustainable consumption while accounting for personal values is a more complex task as potential trade-offs arise when trying to satisfy environmental and personal goals. This article focuses on value-sensitive design of recommender systems, which enable consumers to improve the sustainability of their purchases while respecting personal and societal values. Value-sensitive recommendations for sustainable consumption are formalized as a multi-objective optimization problem, where each objective represents different sustainability goals and personal values. Novel and existing multi-objective algorithms calculate solutions to this problem. The solutions are proposed as personalized sustainable basket recommendations to consumers. These recommendations are evaluated on a synthetic dataset, which comprises three established real-world datasets from relevant scientific and organizational reports. The synthetic dataset contains quantitative data on product prices, nutritional values, and environmental impact metrics, such as greenhouse gas emissions and water footprint. The recommended baskets are highly similar to consumer purchased baskets and aligned with both sustainability goals and personal values relevant to health, expenditure, and taste. Even when consumers would accept only a fraction of recommendations, a considerable reduction of environmental impact is observed.Comment: Second Draft, merged appendix to main text, stressed the importance of straight-through estimators for fractional decoupling, updated nomenclature and reference
    corecore