24 research outputs found

    FUZZY CONTROLLER OF MODEL REDUCTION DISTILLATION COLUMN WITH MINIMAL RULES

    Get PDF
    In this paper the control of a binary distillation column is described. This control is done with fuzzy logic, one with PI- like fuzzy controller and the other with modified PI fuzzy controller, using the minimal rules for fuzzy processing. This work is focused on model reduction of Wood and Berry binary distillation column to get the best performance. It is desired to minimize the rules in order to reduce the computation time to make a faster decision. Comparisons will be made between two versions of fuzzy controllers utilizing reduced rules to verify the outputs. The controlled variables are top composition with high concentration and bottom composition with low. To demonstrate the performance of the fuzzy PI control schemes, results are compared with a classical PI controller and optimal methods, like Differential Evolution (DE), Invasive Weed Optimization (IWO).The proposed structure is able to quickly track the parameter variation and perform better in load disturbances and also for set point changes. Then all the processes of the distillation column with it? s fuzzy controllers are simulated in MATLAB software as the results are shown

    Double-Loop Multi-Scale Control using Routh-Hurwitz Dimensionless Parameter Tuning for MIMO Processes

    Get PDF
    This paper presents a new approach to controlling MIMO processes by using the double-loop multi-scale control scheme in the decentralized control architecture. The decentralized PID control system has been used in process industry despite its several limitations due to process interactions, time-delays and right half plane poles. To overcome the performance limitation due to process interactions, decoupling controllers are often added to the decentralized PID control system. The proposed strategy based on the double-loop multi-scale control scheme has some advantages over the existing control strategies for MIMO processes. An advantage of the proposed scheme over the decentralized PID control with decoupling system is that, the proposed strategy has a fixed number of dimensionless tuning parameters that are easy to tune. For an n×n MIMO process, the proposed scheme requires the tuning of only 3 to 6 dimensionless parameters instead of the 3n original PID parameters

    Inferential active disturbance rejection control of distillation columns

    Get PDF
    PhD ThesisThe distillation column is an important processing unit in the chemical and oil refining industry. Distillation is the most widely employed separation method in the world’s oil plants, chemical and petrochemical industrial facilities. The main drawback of the technique is high energy consumption, which leads to high production costs. Therefore, distillation columns are required to be controlled close to the desired steady state conditions because of economic incentives. Most industrial distillation columns are currently controlled by conventional multi-loop controllers such as proportional-integral-derivative (PID) controllers, which have several shortcomings such as difficulty coping with sudden set-point jumps, complications due to the integral term (I), and performance degradation due to the effect of noise on the derivative term (D). The control of ill-conditioned and strongly non-linear plants such as high purity distillation needs advanced control schemes for high control performance. This thesis investigates the use of active disturbance rejection control (ADRC) for product composition control in distillation columns. To the author’s knowledge, there are few reported applications of ADRC in the chemical industry. Most ADRC applications are in electrical, robotics and others. Therefore, this research will be the first to apply the ADRC scheme in a common chemical processing unit, and can be considered as a first contribution of this research. Initially, both PI and ADRC schemes are developed and implemented on the Wood–Berry distillation column transfer function model, on a simulated binary distillation column based on a detailed mechanistic model, and on a simulated heat integrated distillation column (HIDiC) based on a detailed mechanistic model. Process reaction curve method and system identification tools are used to obtain the 2×2 multi-input multi-output (MIMO) transfer function of both binary and HIDiC for the purpose of PI tuning where the biggest log-modulus tuning (BLT) method is used. Then, the control performance of ADRC is compared to that of the traditional PI control in terms of set-point tracking and disturbance rejection. The simulation result clearly indicates that the ADRC gives better control performance than PI control in all three case studies. The long time delay associated with product composition analysers in distillation columns such as gas chromatography deteriorates the overall control performance of the ADRC scheme. v To overcome this issue an inferential ADRC scheme is proposed and can be considered as a second contribution of this research. The tray temperatures of distillation columns are used to estimate both the top and bottom product compositions that are difficult to measure on-line without a time delay. Due to the strong correlation that exists in the tray temperature data, principal component regression (PCR) and partial least square (PLS) are used to build the soft sensors, which are then integrated into the ADRC. In order to overcome control offsets caused by the discrepancy between soft sensor estimation and actual compositions measurement, an intermittent mean updating technique is used to correct both the PCR and PLS model predictions. Furthermore, no significant differences were observed from the simulation results in the prediction errors reported by both PCR and PLS. The proposed inferential ADRC scheme shows effective and promising results in dealing with non-linear systems with a large measurement delay, where the ADRC has the ability to accommodate both internal uncertainties and external disturbances by treating the impact from both factors as total disturbances that will then be estimated using the extended state observer (ESO) and cancelled out by the control law. The inferential ADRC control scheme provides tighter product composition control that will lead to reduced energy consumption and hence increase the distillation profitability. A binary distillation column for separating a methanol–water mixture and an HIDiC for separating a benzene–toluene mixture are used to verify the developed inferential ADRC control scheme.Petroleum Development of Oman (PDO) for their generous support and scholarshi

    Aeronautical Engineering: A continuing bibliography, 1982 cumulative index

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (145) through NASA SP-7037 (156) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes

    Energy: A continuing bibliography with indexes, supplement 16, January 1978

    Get PDF
    This bibliography lists 1287 reports, articles, and other documents introduced into the NASA scientific and technical information system from October 1, 1977 through December 31, 1977

    Microscopy Conference 2021 (MC 2021) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2021"
    corecore