9,341 research outputs found

    Learning a Local Feature Descriptor for 3D LiDAR Scans

    Full text link
    Robust data association is necessary for virtually every SLAM system and finding corresponding points is typically a preprocessing step for scan alignment algorithms. Traditionally, handcrafted feature descriptors were used for these problems but recently learned descriptors have been shown to perform more robustly. In this work, we propose a local feature descriptor for 3D LiDAR scans. The descriptor is learned using a Convolutional Neural Network (CNN). Our proposed architecture consists of a Siamese network for learning a feature descriptor and a metric learning network for matching the descriptors. We also present a method for estimating local surface patches and obtaining ground-truth correspondences. In extensive experiments, we compare our learned feature descriptor with existing 3D local descriptors and report highly competitive results for multiple experiments in terms of matching accuracy and computation time. \end{abstract}Comment: Accepted for IROS-2018. Project details and code: http://deep3d-descriptor.informatik.uni-freiburg.de

    A Performance Evaluation of Local Features for Image Based 3D Reconstruction

    Full text link
    This paper performs a comprehensive and comparative evaluation of the state of the art local features for the task of image based 3D reconstruction. The evaluated local features cover the recently developed ones by using powerful machine learning techniques and the elaborately designed handcrafted features. To obtain a comprehensive evaluation, we choose to include both float type features and binary ones. Meanwhile, two kinds of datasets have been used in this evaluation. One is a dataset of many different scene types with groundtruth 3D points, containing images of different scenes captured at fixed positions, for quantitative performance evaluation of different local features in the controlled image capturing situations. The other dataset contains Internet scale image sets of several landmarks with a lot of unrelated images, which is used for qualitative performance evaluation of different local features in the free image collection situations. Our experimental results show that binary features are competent to reconstruct scenes from controlled image sequences with only a fraction of processing time compared to use float type features. However, for the case of large scale image set with many distracting images, float type features show a clear advantage over binary ones

    Drought Stress Classification using 3D Plant Models

    Full text link
    Quantification of physiological changes in plants can capture different drought mechanisms and assist in selection of tolerant varieties in a high throughput manner. In this context, an accurate 3D model of plant canopy provides a reliable representation for drought stress characterization in contrast to using 2D images. In this paper, we propose a novel end-to-end pipeline including 3D reconstruction, segmentation and feature extraction, leveraging deep neural networks at various stages, for drought stress study. To overcome the high degree of self-similarities and self-occlusions in plant canopy, prior knowledge of leaf shape based on features from deep siamese network are used to construct an accurate 3D model using structure from motion on wheat plants. The drought stress is characterized with a deep network based feature aggregation. We compare the proposed methodology on several descriptors, and show that the network outperforms conventional methods.Comment: Appears in Workshop on Computer Vision Problems in Plant Phenotyping (CVPPP), International Conference on Computer Vision (ICCV) 201

    D2D: Keypoint Extraction with Describe to Detect Approach

    Full text link
    In this paper, we present a novel approach that exploits the information within the descriptor space to propose keypoint locations. Detect then describe, or detect and describe jointly are two typical strategies for extracting local descriptors. In contrast, we propose an approach that inverts this process by first describing and then detecting the keypoint locations. % Describe-to-Detect (D2D) leverages successful descriptor models without the need for any additional training. Our method selects keypoints as salient locations with high information content which is defined by the descriptors rather than some independent operators. We perform experiments on multiple benchmarks including image matching, camera localisation, and 3D reconstruction. The results indicate that our method improves the matching performance of various descriptors and that it generalises across methods and tasks

    Image Processing on IOPA Radiographs: A comprehensive case study on Apical Periodontitis

    Full text link
    With the recent advancements in Image Processing Techniques and development of new robust computer vision algorithms, new areas of research within Medical Diagnosis and Biomedical Engineering are picking up pace. This paper provides a comprehensive in-depth case study of Image Processing, Feature Extraction and Analysis of Apical Periodontitis diagnostic cases in IOPA (Intra Oral Peri-Apical) Radiographs, a common case in oral diagnostic pipeline. This paper provides a detailed analytical approach towards improving the diagnostic procedure with improved and faster results with higher accuracy targeting to eliminate True Negative and False Positive cases.Comment: 15 pages, 42 figures and Submitted at ICIAP 2019: 21st International Conference on Image Analysis and Processin

    3D Scan Registration using Curvelet Features in Planetary Environments

    Full text link
    Topographic mapping in planetary environments relies on accurate 3D scan registration methods. However, most global registration algorithms relying on features such as FPFH and Harris-3D show poor alignment accuracy in these settings due to the poor structure of the Mars-like terrain and variable resolution, occluded, sparse range data that is hard to register without some a-priori knowledge of the environment. In this paper, we propose an alternative approach to 3D scan registration using the curvelet transform that performs multi-resolution geometric analysis to obtain a set of coefficients indexed by scale (coarsest to finest), angle and spatial position. Features are detected in the curvelet domain to take advantage of the directional selectivity of the transform. A descriptor is computed for each feature by calculating the 3D spatial histogram of the image gradients, and nearest neighbor based matching is used to calculate the feature correspondences. Correspondence rejection using Random Sample Consensus identifies inliers, and a locally optimal Singular Value Decomposition-based estimation of the rigid-body transformation aligns the laser scans given the re-projected correspondences in the metric space. Experimental results on a publicly available data-set of planetary analogue indoor facility, as well as simulated and real-world scans from Neptec Design Group's IVIGMS 3D laser rangefinder at the outdoor CSA Mars yard demonstrates improved performance over existing methods in the challenging sparse Mars-like terrain.Comment: 27 pages in Journal of Field Robotics, 201

    DASC: Robust Dense Descriptor for Multi-modal and Multi-spectral Correspondence Estimation

    Full text link
    Establishing dense correspondences between multiple images is a fundamental task in many applications. However, finding a reliable correspondence in multi-modal or multi-spectral images still remains unsolved due to their challenging photometric and geometric variations. In this paper, we propose a novel dense descriptor, called dense adaptive self-correlation (DASC), to estimate multi-modal and multi-spectral dense correspondences. Based on an observation that self-similarity existing within images is robust to imaging modality variations, we define the descriptor with a series of an adaptive self-correlation similarity measure between patches sampled by a randomized receptive field pooling, in which a sampling pattern is obtained using a discriminative learning. The computational redundancy of dense descriptors is dramatically reduced by applying fast edge-aware filtering. Furthermore, in order to address geometric variations including scale and rotation, we propose a geometry-invariant DASC (GI-DASC) descriptor that effectively leverages the DASC through a superpixel-based representation. For a quantitative evaluation of the GI-DASC, we build a novel multi-modal benchmark as varying photometric and geometric conditions. Experimental results demonstrate the outstanding performance of the DASC and GI-DASC in many cases of multi-modal and multi-spectral dense correspondences

    A Sparse Representation of Complete Local Binary Pattern Histogram for Human Face Recognition

    Full text link
    Human face recognition has been a long standing problem in computer vision and pattern recognition. Facial analysis can be viewed as a two-fold problem, namely (i) facial representation, and (ii) classification. So far, many face representations have been proposed, a well-known method is the Local Binary Pattern (LBP), which has witnessed a growing interest. In this respect, we treat in this paper the issues of face representation as well as classification in a novel manner. On the one hand, we use a variant to LBP, so-called Complete Local Binary Pattern (CLBP), which differs from the basic LBP by coding a given local region using a given central pixel and Sing_ Magnitude difference. Subsequently, most of LBPbased descriptors use a fixed grid to code a given facial image, which technique is, in most cases, not robust to pose variation and misalignment. To cope with such issue, a representative Multi-Resolution Histogram (MH) decomposition is adopted in our work. On the other hand, having the histograms of the considered images extracted, we exploit their sparsity to construct a so-called Sparse Representation Classifier (SRC) for further face classification. Experimental results have been conducted on ORL face database, and pointed out the superiority of our scheme over other popular state-of-the-art techniques.Comment: Accepted (but unattended) in IEEE-EMBS International Conferences on Biomedical and Health Informatics (BHI

    Feature-based groupwise registration of historical aerial images to present-day ortho-photo maps

    Full text link
    In this paper, we address the registration of historical WWII images to present-day ortho-photo maps for the purpose of geolocalization. Due to the challenging nature of this problem, we propose to register the images jointly as a group rather than in a step-by-step manner. To this end, we exploit Hough Voting spaces as pairwise registration estimators and show how they can be integrated into a probabilistic groupwise registration framework that can be efficiently optimized. The feature-based nature of our registration framework allows to register images with a-priori unknown translational and rotational relations, and is also able to handle scale changes of up to 30% in our test data due to a final geometrically guided matching step. The superiority of the proposed method over existing pairwise and groupwise registration methods is demonstrated on eight highly challenging sets of historical images with corresponding ortho-photo maps.Comment: Under review at Elsevier Pattern Recognitio

    Semantic Image Networks for Human Action Recognition

    Full text link
    In this paper, we propose the use of a semantic image, an improved representation for video analysis, principally in combination with Inception networks. The semantic image is obtained by applying localized sparse segmentation using global clustering (LSSGC) prior to the approximate rank pooling which summarizes the motion characteristics in single or multiple images. It incorporates the background information by overlaying a static background from the window onto the subsequent segmented frames. The idea is to improve the action-motion dynamics by focusing on the region which is important for action recognition and encoding the temporal variances using the frame ranking method. We also propose the sequential combination of Inception-ResNetv2 and long-short-term memory network (LSTM) to leverage the temporal variances for improved recognition performance. Extensive analysis has been carried out on UCF101 and HMDB51 datasets which are widely used in action recognition studies. We show that (i) the semantic image generates better activations and converges faster than its original variant, (ii) using segmentation prior to approximate rank pooling yields better recognition performance, (iii) The use of LSTM leverages the temporal variance information from approximate rank pooling to model the action behavior better than the base network, (iv) the proposed representations can be adaptive as they can be used with existing methods such as temporal segment networks to improve the recognition performance, and (v) our proposed four-stream network architecture comprising of semantic images and semantic optical flows achieves state-of-the-art performance, 95.9% and 73.5% recognition accuracy on UCF101 and HMDB51, respectively.Comment: 30 page
    • …
    corecore