85,619 research outputs found

    The discriminative functional mixture model for a comparative analysis of bike sharing systems

    Get PDF
    Bike sharing systems (BSSs) have become a means of sustainable intermodal transport and are now proposed in many cities worldwide. Most BSSs also provide open access to their data, particularly to real-time status reports on their bike stations. The analysis of the mass of data generated by such systems is of particular interest to BSS providers to update system structures and policies. This work was motivated by interest in analyzing and comparing several European BSSs to identify common operating patterns in BSSs and to propose practical solutions to avoid potential issues. Our approach relies on the identification of common patterns between and within systems. To this end, a model-based clustering method, called FunFEM, for time series (or more generally functional data) is developed. It is based on a functional mixture model that allows the clustering of the data in a discriminative functional subspace. This model presents the advantage in this context to be parsimonious and to allow the visualization of the clustered systems. Numerical experiments confirm the good behavior of FunFEM, particularly compared to state-of-the-art methods. The application of FunFEM to BSS data from JCDecaux and the Transport for London Initiative allows us to identify 10 general patterns, including pathological ones, and to propose practical improvement strategies based on the system comparison. The visualization of the clustered data within the discriminative subspace turns out to be particularly informative regarding the system efficiency. The proposed methodology is implemented in a package for the R software, named funFEM, which is available on the CRAN. The package also provides a subset of the data analyzed in this work.Comment: Published at http://dx.doi.org/10.1214/15-AOAS861 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore