659 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    A Modified Neuro-Fuzzy System Using Metaheuristic Approaches for Data Classification

    Get PDF
    The impact of innovated Neuro-Fuzzy System (NFS) has emerged as a dominant technique for addressing various difficult research problems in business. ANFIS (Adaptive Neuro-Fuzzy Inference system) is an efficient combination of ANN and fuzzy logic for modeling highly non-linear, complex and dynamic systems. It has been proved that, with proper number of rules, an ANFIS system is able to approximate every plant. Even though it has been widely used, ANFIS has a major drawback of computational complexities. The number of rules and its tunable parameters increase exponentially when the numbers of inputs are large. Moreover, the standard learning process of ANFIS involves gradient based learning which has prone to fall in local minima. Many researchers have used meta-heuristic algorithms to tune parameters of ANFIS. This study will modify ANFIS architecture to reduce its complexity and improve the accuracy of classification problems. The experiments are carried out by trying different types and shapes of membership functions and meta-heuristics Artificial Bee Colony (ABC) algorithm with ANFIS and the training error results are measured for each combination. The results showed that modified ANFIS combined with ABC method provides better training error results than common ANFIS model

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    FOHC: Firefly Optimizer Enabled Hybrid approach for Cancer Classification

    Get PDF
    Early detection and prediction of cancer, a group of chronic diseases responsible for a large number of deaths each year and a serious public health hazard, can lead to more effective treatment at an earlier stage in the disease's progression. In the current era, machine learning (ML) has widely been used to develop predictive models for incurable diseases such as cancer, heart disease, and diabetes, among others, taking into account both existing datasets and personally collected datasets, more research is still being conducted in this area. Using recursive feature elimination (RFE), principal component analysis (PCA), the Firefly Algorithm (FA), and a support vector machine (SVM) classifier, this study proposed a Firefly Optimizer-enabled Hybrid approach for Cancer classification (FOHC). This study considers feature selection and dimensionality reduction techniques RFE and PCA, and FA is used as the optimization algorithm. In the last stage, the SVM is applied to the pre-processed dataset as the classifier. To evaluate the proposed model, empirical analysis has been carried out on three different kinds of cancer disease datasets including Brain, Breast, and Lung cancer obtained from the UCI-ML warehouse. Based on the various performance parameters like accuracy, error rate, precision, recall, f-measure, etc., some experiments are carried out on the Jupyter platform using Python codes. This proposed model, FOHC, surpasses previous methods and other considered state-of-the-art works, with 98.94% accuracy for Breast cancer, 95.58% accuracy for Lung cancer, and 96.34% accuracy for Brain cancer. The outcomes of these experiments represent the effectiveness of the proposed work
    • …
    corecore