159 research outputs found

    Use of Photovoltaics in Microgrid as Energy Source and Control Method Using MATLAB/SIMULINK

    Get PDF
    Microgrid in power system has drawn wide attention due to its significant benefits in terms of sustainable energy system in recent years. This approach is the most economical alternative to conventional energy system which uses Renewable Energy (RE) resources. RE sources ensure pollution free and clean environment by emitting zero CO2. This paper proposes a design of a microgrid system using solar photovoltaics (PV) as the Distributed Energy Resources (DERs) and a controlling method for managing the components of microgrid by using MATLAB/SIMULINK. The results show that microgrid system is promising as alternative to replace the fossil fuel based energy system. Integration of an effective controller can help to manage the loads and resources, resulting in more stable and reliable.

    Stratégie de protection à sélectivité totale pour réseaux MTDC

    No full text
    International audienceLa mise en place de réseaux à courant continu de grande taille en Europe est un objectif plausible dans un futur proche compte tenu de l'évolution du mix énergétique. En effet, de grands sites décentralisés de production d'énergies renouvelables vont progressivement apparaître (ex : fermes éoliennes offshores, centrales de production photovoltaïque, etc.). Avec les convertisseurs de type VSC, il est techniquement possible d'assembler plusieurs liaisons HVDC en une structure en réseau. Ainsi, un tel réseau permettra le transit d'une grande quantité de puissance, de l'ordre de plusieurs gigawatts, en courant continu, entre les différentes stations de conversion qui le composent. La protection d'un tel ouvrage est par conséquent un point critique et indispensable. En effet, en cas de défaut dans la partie à courant continu et au vue des puissances qui transitent, il est primordial de réduire au maximum les conséquences liées à l'apparition de ce défaut. Si plusieurs gigawatts sont échangés dans le réseau à courant continu, il est risqué pour la stabilité du (ou des) réseau(x) AC extérieur(s) de stopper l'ensemble de ce transit. C'est pour cela que des stratégies de protection rapides, efficaces et sélectives doivent être mises en œuvre. Cet article propose une revue des principales contraintes liées à la protection des réseaux à courant continu qui sont intrinsèques au courant continu, des différentes stratégies de protection qui peuvent être appliquées à un tel réseau et des principaux types de disjoncteurs à courant continu. Les différentes durées de fonctionnement de la détection et des disjoncteurs sont à comparer avec le temps critique d'élimination des défauts du réseau MTDC. Mots-clés—Disjoncteur à courant continu HVDC, Plan de protection, Réseau MTDC, Station de conversion, Sélectivité, Temps critique d'élimination des défauts.</p

    Toward Fault Adaptive Power Systems in Electric Ships

    Get PDF
    Shipboard Power Systems (SPS) play a significant role in next-generation Navy fleets. With the increasing power demand from propulsion loads, ship service loads, weaponry systems and mission systems, a stable and reliable SPS is critical to support different aspects of ship operation. It also becomes the technology-enabler to improve ship economy, efficiency, reliability, and survivability. Moreover, it is important to improve the reliability and robustness of the SPS while working under different operating conditions to ensure safe and satisfactory operation of the system. This dissertation aims to introduce novel and effective approaches to respond to different types of possible faults in the SPS. According to the type and duration, the possible faults in the Medium Voltage DC (MVDC) SPS have been divided into two main categories: transient and permanent faults. First, in order to manage permanent faults in MVDC SPS, a novel real-time reconfiguration strategy has been proposed. Onboard postault reconfiguration aims to ensure the maximum power/service delivery to the system loads following a fault. This study aims to implement an intelligent real-time reconfiguration algorithm in the RTDS platform through an optimization technique implemented inside the Real-Time Digital Simulator (RTDS). The simulation results demonstrate the effectiveness of the proposed real-time approach to reconfigure the system under different fault situations. Second, a novel approach to mitigate the effect of the unsymmetrical transient AC faults in the MVDC SPS has been proposed. In this dissertation, the application of combined Static Synchronous Compensator (STATCOM)-Super Conducting Fault Current Limiter (SFCL) to improve the stability of the MVDC SPS during transient faults has been investigated. A Fluid Genetic Algorithm (FGA) optimization algorithm is introduced to design the STATCOM\u27s controller. Moreover, a multi-objective optimization problem has been formulated to find the optimal size of SFCL\u27s impedance. In the proposed scheme, STATCOM can assist the SFCL to keep the vital load terminal voltage close to the normal state in an economic sense. The proposed technique provides an acceptable post-disturbance and postault performance to recover the system to its normal situation over the other alternatives

    Simulation verification techniques study: Simulation performance validation techniques document

    Get PDF
    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described

    Protection of Microgrids: A Scalable and Topology Agnostic Scheme With Self-Healing Dynamic Reconfiguration

    Get PDF
    Momentum towards realizing the smart grid will continue to result in high penetration of renewable fed Distributed Energy Resources (DERs) in the Electric Power System (EPS). These DERs will most likely be Inverter Based Resources(IBRs) and will be an integral part of the distribution system in the near future. The drive towards resiliency with these IBRs will enable a modular topology where several microgrids are tied together, operating synchronously to form the future EPS at the distribution level. Since the microgrids can evolve from existing distribution feeders, they will be unbalanced in load, phases, and feeder impedances. A typical control strategy of a conventional inverter that follows the grid voltage and frequency while injecting positive-sequence current can lead to undesirable performance for the unbalanced systems, especially in the islanded mode of operation. So, the dissertation will first focus on the control aspect of IBRs in an unbalanced system. Acceptable operating conditions with stability against disturbances and faults are the primary focus. For the proper functioning of these microgrids, there is a need for grid-forming inverters that can enable acceptable performance and coexist with conventional grid-following inverters that supply only positive-sequence currents. In addition to the control objectives, limiting inverter output during faulted or overload conditions with a current limiter is essential. These control objectives can be implemented in both the synchronous reference frame (dqdq coordinates) and the natural reference frame (abcabc coordinates). Hence a comparison study is performed to understand the merit of each implementation related to this specific topology. As 100\% IBR-based microgrid becomes an integral part of the distribution system, the issues and challenges arising from its implementation should be addressed for successful operation. Designing reliable protection is one of the significant challenges for microgrids. Most microgrid protection schemes found in published literature suffer from a lack of generality. They work well for the assumed topology, including the type and placement of sources. Other generic protection schemes tend to be too complicated, expensive, or both. To overcome these drawbacks, a topology-agnostic, scalable, and cost-aware protection based on fundamental principles is developed that works in the presence of high penetration of inverter-based resources (IBRs). The protection system includes primary and backup. It also implements stable automatic reconfiguration of the healthy sections of the system after clearance of fault, thus increasing resilience by self-healing. The scheme is validated in PSCAD for primary and backup protection and reconfiguration on the IEEE 123-node feeder in grid-connected and islanded modes with 15 IBRs connected to the system. As the designed protection scheme requires communication between protective devices and the microgrid controller, the method must be validated in real-time with cyber-physical co-simulation for a successful demonstration. In this regard, a Hardware-In-the-Loop (HIL) platform between a simulated power system model using RTDS and physical protective devices is built. In the HIL platform, the primary protection of the scheme is programmed in SEL 421-7 relay, and backup protection is programmed in MATLAB on a generic computer acting as a microgrid controller. The IEC 61850 models are used to communicate between the SEL-421-7 relay and RTDS, whereas TCP/IP communication connects the microgrid controller to RTDS. The focus of the work is to demonstrate the co-simulation platform with communication links established using both protocols and validate the proposed scheme in real-time on the IEEE 123 node distribution feeder. The IEC 61850 and TCP/IP communications configuration are discussed as the interface requires proper hardware and software setup. The real-time performance indicates the Hardware In the Loop (HIL) framework as a competent testing environment for the developed protection scheme for microgrids. In summary, a scalable and topology agnostic protection scheme with self-healing dynamic reconfiguration is developed for microgrids. Clear guidelines for implementation of the proposed scheme on any microgrid topology are also described

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios

    Elgamal Elliptic Curve Based Secure Communication Architecture for Microgrids

    Get PDF
    open access articleMicrogrids play an important role in today’s power systems as the distributed generation is becoming increasingly common. They can operate in two possible modes: (i) standalone and (ii) grid-connected. The transitional state from standalone to grid-connected mode is very critical and requires the microgrid to be synchronized with the main grid. Thus, secure, reliable and trustworthy control and communication is utmost necessary to prevent out-of-sync connection which could severely damage the microgrid and/or the main grid. Existing solutions consume more resources and take long time to establish a secure connection. The objective of the proposed work is to reduce the connection establishment time by using efficient computational algorithms and save the resources. This paper proposes a secure authentication and key establishment mechanism for ensuring safe operation and control of the microgrids. The proposed approach uses the concept of Elgamal with slight modification. Private key of the sender is used instead of a random number. The proposed modification ensures the non repudiation. This paper also presents a system threat model along with security network architecture and evaluates the performance of proposed algorithm in protecting microgrid communication against man in the middle attacks and replay attacks that could delay the packets to damage the system and need to be detected. Mathematical modeling and simulation results show that the proposed algorithm performs better than the existing protocols in terms of connection establishment, resource consumption and security level

    International Conference on Energy

    Get PDF
    UBT Annual International Conference is the 11th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: Art and Digital Media Agriculture, Food Science and Technology Architecture and Spatial Planning Civil Engineering, Infrastructure and Environment Computer Science and Communication Engineering Dental Sciences Education and Development Energy Efficiency Engineering Integrated Design Information Systems and Security Journalism, Media and Communication Law Language and Culture Management, Business and Economics Modern Music, Digital Production and Management Medicine and Nursing Mechatronics, System Engineering and Robotics Pharmaceutical and Natural Sciences Political Science Psychology Sport, Health and Society Security Studies This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBT UBT – Higher Education Institutio
    corecore