87 research outputs found

    Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures

    Get PDF
    Clinical acoustic voice recording analysis is usually performed using classical perturbation measures including jitter, shimmer and noise-to-harmonic ratios. However, restrictive mathematical limitations of these measures prevent analysis for severely dysphonic voices. Previous studies of alternative nonlinear random measures addressed wide varieties of vocal pathologies. Here, we analyze a single vocal pathology cohort, testing the performance of these alternative measures alongside classical measures.

We present voice analysis pre- and post-operatively in unilateral vocal fold paralysis (UVFP) patients and healthy controls, patients undergoing standard medialisation thyroplasty surgery, using jitter, shimmer and noise-to-harmonic ratio (NHR), and nonlinear recurrence period density entropy (RPDE), detrended fluctuation analysis (DFA) and correlation dimension. Systematizing the preparative editing of the recordings, we found that the novel measures were more stable and hence reliable, than the classical measures, on healthy controls.

RPDE and jitter are sensitive to improvements pre- to post-operation. Shimmer, NHR and DFA showed no significant change (p > 0.05). All measures detect statistically significant and clinically important differences between controls and patients, both treated and untreated (p < 0.001, AUC > 0.7). Pre- to post-operation, GRBAS ratings show statistically significant and clinically important improvement in overall dysphonia grade (G) (AUC = 0.946, p < 0.001).

Re-calculating AUCs from other study data, we compare these results in terms of clinical importance. We conclude that, when preparative editing is systematized, nonlinear random measures may be useful UVFP treatment effectiveness monitoring tools, and there may be applications for other forms of dysphonia.
&#xa

    Acoustic measurement of overall voice quality in sustained vowels and continuous speech

    Get PDF
    Measurement of dysphonia severity involves auditory-perceptual evaluations and acoustic analyses of sound waves. Meta-analysis of proportional associations between these two methods showed that many popular perturbation metrics and noise-to-harmonics and others ratios do not yield reasonable results. However, this meta-analysis demonstrated that the validity of specific autocorrelation- and cepstrum-based measures was much more convincing, and appointed ‘smoothed cepstral peak prominence’ as the most promising metric of dysphonia severity. Original research confirmed this inferiority of perturbation measures and superiority of cepstral indices in dysphonia measurement of laryngeal-vocal and tracheoesophageal voice samples. However, to be truly representative for daily voice use patterns, measurement of overall voice quality is ideally founded on the analysis of sustained vowels ánd continuous speech. A customized method for including both sample types and calculating the multivariate Acoustic Voice Quality Index (i.e., AVQI), was constructed for this purpose. Original study of the AVQI revealed acceptable results in terms of initial concurrent validity, diagnostic precision, internal and external cross-validity and responsiveness to change. It thus was concluded that the AVQI can track changes in dysphonia severity across the voice therapy process. There are many freely and commercially available computer programs and systems for acoustic metrics of dysphonia severity. We investigated agreements and differences between two commonly available programs (i.e., Praat and Multi-Dimensional Voice Program) and systems. The results indicated that clinicians better not compare frequency perturbation data across systems and programs and amplitude perturbation data across systems. Finally, acoustic information can also be utilized as a biofeedback modality during voice exercises. Based on a systematic literature review, it was cautiously concluded that acoustic biofeedback can be a valuable tool in the treatment of phonatory disorders. When applied with caution, acoustic algorithms (particularly cepstrum-based measures and AVQI) have merited a special role in assessment and/or treatment of dysphonia severity

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    KLASYFIKACJA CHOROBY PARKINSONA I INNYCH ZABURZEŃ NEUROLOGICZNYCH Z WYKORZYSTANIEM EKSTRAKCJI CECH GŁOSOWYCH I TECHNIK REDUKCJI

    Get PDF
    This study aimed to differentiate individuals with Parkinson's disease (PD) from those with other neurological disorders (ND) by analyzing voice samples, considering the association between voice disorders and PD. Voice samples were collected from 76 participants using different recording devices and conditions, with participants instructed to sustain the vowel /a/ comfortably. PRAAT software was employed to extract features including autocorrelation (AC), cross-correlation (CC), and Mel frequency cepstral coefficients (MFCC) from the voice samples. Principal component analysis (PCA) was utilized to reduce the dimensionality of the features. Classification Tree (CT), Logistic Regression, Naive Bayes (NB), Support Vector Machines (SVM), and Ensemble methods were employed as supervised machine learning techniques for classification. Each method provided distinct strengths and characteristics, facilitating a comprehensive evaluation of their effectiveness in distinguishing PD patients from individuals with other neurological disorders. The Naive Bayes kernel, using seven PCA-derived components, achieved the highest accuracy rate of 86.84% among the tested classification methods. It is worth noting that classifier performance may vary based on the dataset and specific characteristics of the voice samples. In conclusion, this study demonstrated the potential of voice analysis as a diagnostic tool for distinguishing PD patients from individuals with other neurological disorders. By employing a variety of voice analysis techniques and utilizing different machine learning algorithms, including Classification Tree, Logistic Regression, Naive Bayes, Support Vector Machines, and Ensemble methods, a notable accuracy rate was attained. However, further research and validation using larger datasets are required to consolidate and generalize these findings for future clinical applications.Przedstawione badanie miało na celu różnicowanie osób z chorobą Parkinsona (PD) od osób z innymi zaburzeniami neurologicznymi poprzez analizę próbek głosowych, biorąc pod uwagę związek między zaburzeniami głosu a PD. Próbki głosowe zostały zebrane od 76 uczestników przy użyciu różnych urządzeń i warunków nagrywania, a uczestnicy byli instruowani, aby wydłużyć samogłoskę /a/ w wygodnym tempie. Oprogramowanie PRAAT zostało zastosowane do ekstrakcji cech, takich jak autokorelacja (AC), krzyżowa korelacja (CC) i współczynniki cepstralne Mel (MFCC) z próbek głosowych. Analiza składowych głównych (PCA) została wykorzystana w celu zmniejszenia wymiarowości cech. Jako techniki nadzorowanego uczenia maszynowego wykorzystano drzewa decyzyjne (CT), regresję logistyczną, naiwny klasyfikator Bayesa (NB), maszyny wektorów nośnych (SVM) oraz metody zespołowe. Każda z tych metod posiadała swoje unikalne mocne strony i charakterystyki, umożliwiając kompleksową ocenę ich skuteczności w rozróżnianiu pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Naiwny klasyfikator Bayesa, wykorzystujący siedem składowych PCA, osiągnął najwyższy wskaźnik dokładności na poziomie 86,84% wśród przetestowanych metod klasyfikacji. Należy jednak zauważyć, że wydajność klasyfikatora może się różnić w zależności od zbioru danych i konkretnych cech próbek głosowych. Podsumowując, to badanie wykazało potencjał analizy głosu jako narzędzia diagnostycznego do rozróżniania pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Poprzez zastosowanie różnych technik analizy głosu i wykorzystanie różnych algorytmów uczenia maszynowego, takich jak drzewa decyzyjne, regresja logistyczna, naiwny klasyfikator Bayesa, maszyny wektorów nośnych i metody zespołowe, osiągnięto znaczący poziom dokładności. Niemniej jednak, konieczne są dalsze badania i walidacja na większych zbiorach danych w celu skonsolidowania i uogólnienia tych wyników dla przyszłych zastosowań klinicznych

    Automatic acoustic analysis of waveform perturbations

    Get PDF

    VOice analysis with Iphones: a low Cost Experimental Solution

    Get PDF
    Background: Acoustic voice analysis requires a resource intensive setup, including a soundproof booth. This project evaluates smartphone microphone and recording environment impacts on voice sample collection for acoustic voice analysis. A proprietary analysis algorithm is presented for validation. Methods: Microphone and recording environment were evaluated using previously collected voice samples presented in four conditions to test two microphones and two recording environments. Prospective samples were used to test the proprietary algorithm, whereby samples were analyzed using this and Praat. Results: Microphone and recording environment had small, clinically unimportant impacts on most measurements. The proprietary algorithm reliably analyzed sustained vowels, with strong correlation to the Praat results. Continuous speech analysis was less reliable. Conclusion: Smartphone microphones are adequate for voice sample collection. Quiet, non-soundproof settings can be used for voice collection. The proprietary algorithm represents a reliable method to analyze sustained vowel samples. Some improvements are necessary before continuous speech analysis can be considered valid

    CLASSIFICATION OF PARKINSON’S DISEASE AND OTHER NEUROLOGICAL DISORDERS USING VOICE FEATURES EXTRACTION AND REDUCTION TECHNIQUES

    Get PDF
    This study aimed to differentiate individuals with Parkinson's disease (PD) from those with other neurological disorders (ND) by analyzing voice samples, considering the association between voice disorders and PD. Voice samples were collected from 76 participants using different recording devices and conditions, with participants instructed to sustain the vowel /a/ comfortably. PRAAT software was employed to extract features including autocorrelation (AC), cross-correlation (CC), and Mel frequency cepstral coefficients (MFCC) from the voice samples. Principal component analysis (PCA) was utilized to reduce the dimensionality of the features. Classification Tree (CT), Logistic Regression, Naive Bayes (NB), Support Vector Machines (SVM), and Ensemble methods were employed as supervised machine learning techniques for classification. Each method provided distinct strengths and characteristics, facilitating a comprehensive evaluation of their effectiveness in distinguishing PD patients from individuals with other neurological disorders. The Naive Bayes kernel, using seven PCA-derived components, achieved the highest accuracy rate of 86.84% among the tested classification methods. It is worth noting that classifier performance may vary based on the dataset and specific characteristics of the voice samples. In conclusion, this study demonstrated the potential of voice analysis as a diagnostic tool for distinguishing PD patients from individuals with other neurological disorders. By employing a variety of voice analysis techniques and utilizing different machine learning algorithms, including Classification Tree, Logistic Regression, Naive Bayes, Support Vector Machines, and Ensemble methods, a notable accuracy rate was attained. However, further research and validation using larger datasets are required to consolidate and generalize these findings for future clinical applications

    Pan European Voice Conference - PEVOC 11

    Get PDF
    The Pan European VOice Conference (PEVOC) was born in 1995 and therefore in 2015 it celebrates the 20th anniversary of its establishment: an important milestone that clearly expresses the strength and interest of the scientific community for the topics of this conference. The most significant themes of PEVOC are singing pedagogy and art, but also occupational voice disorders, neurology, rehabilitation, image and video analysis. PEVOC takes place in different European cities every two years (www.pevoc.org). The PEVOC 11 conference includes a symposium of the Collegium Medicorum Theatri (www.comet collegium.com
    corecore