16 research outputs found

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields

    MMSE equalizers and precoders in turbo equalization.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.Transmission of digital information through a wireless channel with resolvable multipaths or a bandwidth limited channel results in intersymbol interference (1SI) among a number of adjacent symbols. The design of an equalizer is thus important to combat the ISI problem for these types of channels and hence provides reliable communication. Channel coding is used to provide reliable data transmission by adding controlled redundancy to the data. Turbo equalization (TE) is the joint design of channel coding and equalization to approach the achievable uniform input information rate of an ISI channel. The main focus of this dissertation is to investigate the different TE techniques used for a static frequency selective additive white Gaussian noise (AWGN) channel. The extrinsic information transfer (EXIT) chart is used to analyse the iterative equalization/decoding process and to determine the minimum signal to noise ratio (SNR) in order to achieve convergence. The use of the Minimum Mean Square Error (MMSE) Linear Equalizer (LE) using a priori information has been shown to achieve the same performance compared with the optimal trellis based Maximum A Posterior (MAP) equalizer for long block lengths. Motivated by improving the performance of the MMSE LE, two equalization schemes are initially proposed: the MMSE Linear Equalizer with Extrinsic information Feedback (LE-EF (1) and (U)). A general structure for the MMSE LE, MMSE Decision Feedback Equalizer (DFE) and two MMSE LE-EF receivers, using a priori information is also presented. The EXIT chart is used to analyse the two proposed equalizers and their characteristics are compared to the existing MAP equalizer, MMSE LE and MMSE DFE. It is shown that the proposed MMSE LE-EF (1) does have an improved performance compared with the existing MMSE LE and approaches the MMSE Linear Equalizer with Perfect Extrinsic information Feedback (LE-PEF) only after a large number of iterations. For this reason the MMSE LE-EF is shown to suffer from the error propagation problem during the early iterations. A novel way to reduce the error propagation problem is proposed to further improve the performance of the MMSE LE-EF (I). The MAP equalizer was shown to offer a much improved performance over the MMSE equalizers, especially during the initial iterations. Motivated by using the good quality of the MAP equalizer during the early iterations and the hybrid MAP/MMSE LE-EF (l) is proposed in order to suppress the error propagation problem inherent in the MMSE LE-EF (I). The EXIT chart analysis reveals that the hybrid MAP/MMSE LE-EF (l) requires fewer iterations in order to achieve convergence relative to the MMSE LE-EF (l). Simulation results demonstrate that the hybrid MAP/MMSE LE-EF (I) has a superior performance compared to the MMSE LE-EF (I) as well as approaches the performance of both the MAP equalizer and MMSE LE-PEF at high SNRs, at the cost of increased complexity relative to the MMSE LEEF (I) receiver. The final part of this dissertation considers the use of precoders in a TE system. It was shown in the literature that a precoder drastically improves the system performance. Motivated by this, the EXIT chart is used to analyse the characteristics of four different precoders for long block lengths. It was shown that using a precoder results in a loss in mutual information during the initial equalization stage. However" we show by analysis and simulations that this phenomenon is not observed in the equalization of all precoded channels. The slope of the transfer function, relating to the MAP equalization of a precoded ISI channel (MEP), during the high input mutual information values is shown to play an important role in determining the convergence of precoded TE systems. Simulation results are presented to show how the precoders' weight affects the convergence of TE systems. The design of the hybrid MAP/MEP equalizer is also proposed. We also show that the EXIT chart can be used to compute the trellis code capacity of a precoded ISI channel

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Analytical Characterization and Optimum Detection of Nonlinear Multicarrier Schemes

    Get PDF
    It is widely recognized that multicarrier systems such as orthogonal frequency division multiplexing (OFDM) are suitable for severely time-dispersive channels. However, it is also recognized that multicarrier signals have high envelope fluctuations which make them especially sensitive to nonlinear distortion effects. In fact, it is almost unavoidable to have nonlinear distortion effects in the transmission chain. For this reason, it is essential to have a theoretical, accurate characterization of nonlinearly distorted signals not only to evaluate the corresponding impact of these distortion effects on the system’s performance, but also to develop mechanisms to combat them. One of the goals of this thesis is to address these challenges and involves a theoretical characterization of nonlinearly distorted multicarrier signals in a simple, accurate way. The other goal of this thesis is to study the optimum detection of nonlinearly distorted, multicarrier signals. Conventionally, nonlinear distortion is seen as a noise term that degrades the system’s performance, leading even to irreducible error floors. Even receivers that try to estimate and cancel it have a poor performance, comparatively to the performance associated to a linear transmission, even with perfect cancellation of nonlinear distortion effects. It is shown that the nonlinear distortion should not be considered as a noise term, but instead as something that contains useful information for detection purposes. The adequate receiver to take advantage of this information is the optimum receiver, since it makes a block-by-block detection, allowing us to exploit the nonlinear distortion which is spread along the signal’s band. Although the optimum receiver for nonlinear multicarrier schemes is too complex, due to its necessity to compare the received signal with all possible transmitted sequences, it is important to study its potential performance gains. In this thesis, it is shown that the optimum receiver outperforms the conventional detection, presenting gains not only relatively to conventional receivers that deal with nonlinear multicarrier signals, but also relatively to conventional receivers that deal with linear, multicarrier signals. We also present sub-optimum receivers which are able to approach the performance gains associated to the optimum detection and that can even outperform the conventional linear, multicarrier schemes

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Améliorations des transmissions VLC (Visible Light Communication) sous contrainte d'éclairage : études théoriques et expérimentations

    Get PDF
    Abstract : Indoor visible light communication (VLC) networks based on light-emitting diodes (LEDs) currently enjoy growing interest thanks in part to their robustness against interference, wide license-free available bandwidth, low cost, good energy efficiency and compatibility with existing lighting infrastructure. In this thesis, we investigate spectral-efficient modulation techniques for the physical layer of VLC to increase throughput while considering the quality of illumination as well as implementation costs. Numerical and experimental studies are performed employing pulse amplitude modulation (PAM) and carrierless amplitude and phase (CAP) modulation under illumination constraints and for high modulation orders. Furthermore, the impact of LED nonlinearity is investigated and a postdistortion technique is evaluated to compensate these nonlinear effects. Within this framework, transmission rates in the order of a few hundred Mb/s are achieved using a test bench made of low-cost components. In addition, an imaging multiple input multiple-output (MIMO) system is developed and the impact on performance of imaging lens misalignment is theoretically and numerically assessed. Finally, a polynomial matrix decomposition technique based on the classical LU factorization method is studied and applied for the first time to MIMO VLC systems in large space indoor environments.Les réseaux de communication en lumière visible (VLC) s’appuyant sur l’utilisation de diodes électroluminescentes (LED) bénéficient actuellement d’un intérêt grandissant, en partie grâce à leur robustesse face aux interférences électromagnétiques, leur large bande disponible non-régulée, leur faible coût, leur bonne efficacité énergétique, ainsi que leur compatibilité avec les infrastructures d’éclairage déjà existantes. Dans cette thèse, nous étudions des techniques de modulation à haute efficacité spectrale pour la couche physique des VLC pour augmenter les débits tout en considérant la qualité de l’éclairage ainsi que les coûts d’implémentation. Des études numériques et expérimentales sont réalisées sur la modulation d’impulsion d’amplitude (PAM) et sur la modulation d’amplitude et de phase sans porteuse (CAP) sous des contraintes d’éclairage et pour des grands ordres de modulation. De plus, l’impact des non-linéarités de la LED est étudié et une technique de post-distorsion est évaluée pour corriger ces effets non-linéaires. Dans ce cadre, des débits de plusieurs centaines de Mb/s sont atteints en utilisant un banc de test réalisé à partir de composants à bas coûts. Par ailleurs, un système multi-entrées multi-sorties (MIMO) imageant est également développé et l’impact du désaxage de l’imageur sur les performances est étudié. Finalement, une technique de décomposition polynomiale basée sur la méthode de factorisation classique LU est étudiée et appliquée aux systèmes MIMO VLC dans des grands espaces intérieurs

    The Experimental Design of Radio-over-Fibre System for 4G Long Term Evolution

    Get PDF
    The 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is the potential key to meet the exponentially increasing demand of the mobile end users. The entire LTE network architecture and signal processing is carried out at the enhanced NodeB (eNB) level, hence the increased complexity and cost. Therefore, it is not efficient to deploy eNB for the purpose of extending the network coverage. As a solution, deployment of relay node (RN), with radio-over-fibre (RoF) acting as the interface between eNB and RN is proposed. Due to the high path loss and multipath fading, wireless interface would not be the ideal channel between eNB and RN. A detailed investigation is carried out by comparing the Rayleigh multipath fading channel with the optical fibre channel, where the latter achieved a ~31 dB of signal-to-noise ratio (SNR) gain. The distributed feedback laser (DFB) is selected as the direct modulated laser (DML) source, where the modulation method introduces a positive frequency chirp (PFC). The existing mathematical expression does not precisely explain on how the rate equations contribute to PFC. Therefore, an expression for PFC is proposed and derived from the carrier and photon densities of the rate equations. Focusing on theoretical development of DML based RoF system, a varying fast Fourier transform (FFT) scheme is introduced into LTE-Advanced (LTE-A) technology as an alternative design to the carrier aggregation. A range of FFT sizes are investigated with different levels of optical launch power (OLP), the optimum OLP has been defined to be within the range of ~-6 to 0 dBm, which is known as the intermixing region. It is found that FFT size-128 provides improved average system efficiency of ~54% and ~65% in comparison to FFT size-64 and FFT size-128, respectively, within the intermixing region. While fixing FFT size to 128, the investigation is diverted to the optimisation of optical modulators. The author revealed that the performance of dual electrode-Mach Zehnder modulator (DE-MZM) is superior to both DML scheme and single electrode (SE)-MZM, where DE-MZM achieved a transmission span of 88 km and 71 km for 16-quadrature amplitude modulation (QAM) and 64-QAM, respectively. At the initial experimental link design and optimisation stage, an optimum modulation region (OMR) is proposed at the optical modulation index (OMI) of 0.38, which resulted in an average error vector magnitude (EVM) of ~1.01% for a 10 km span. The EVM of ~1.01% is further improved by introducing the optimum OLP region at –2 dBm, where the observed average EVM trimmed to ~0.96%. There is no deviation found in the intermixing region by transmitting the LTE signal through a varying transmission span of 10 to 60 km, additionally, it was also revealed that the LTE RoF nonlinear threshold falls above the OLP of 6 dBm. The proposed system was further developed to accommodate 2×2 multiple-input and multiple-output (MIMO) transmission by utilising analogue frequency division multiplexing (FDM) technique. The studies procured that the resulting output quality of signal at 2 GHz and 2.6 GHz is almost identical with a twofold gain in the peak data rate and no occurrence of intermodulation (IMD). In order to emulate the complete LTE RoF solution, an experimental design of full duplex frequency division duplex (FDD) system with dense wavelength division multiplexing (DWDM) architecture is proposed. It is found that channel spacing of 50 MHz between the downlink (DL) and uplink (UL) introduces severe IMD distortion, where an adjacent channel leakage ratio (ACLR) penalty of 14.10 dB is observed. Finally, a novel nonlinear compensation technique utilising a direct modulation based frequency dithering (DMFD) scheme is proposed. The LTE RoF system average SNR gain observed at OLP of 10 dBm for the 50 km transmission span is ~5.97 dB. External modulation based frequency dithering (EMFD) exhibits ~3 dB of average SNR gain over DMFD method

    Next generation passive optical networks based on orthogonal frequency division multiplexing techniques

    Get PDF
    In recent decades, the industry of communications has acquired huge significance, and nowadays constitutes an essential tool for the society information. Thus, the exponential growth in demand of broadband services and the increasing amount of information to be transmitted have spurred the evolution of the access network infrastructure to effectively meet the user needs in an effective way in terms of costs of both installation and maintenance. Passive optical networks (PON) are currently considered the most efficient and least costly alternative to deploy fiber to the home environment. In order to allow many users simultaneously coexist PONs based on time multiplexing (TDMA) have been developed. Looking ahead, however, it is expected that these techniques do not meet the requirements on access networks. In consequence, other multiple access techniques such as Wavelength Division Multiplexing Access (WDMA) or Orthogonal Frequency Division Multiplexing Access (OFDMA) are currently under study and development for use in the next generation of PONs. Particularly, in recent years OFDM has stood out among the scientific community to be considered a solution with great potential on future implementation of PONs. This is especially true due to the capacity of OFDM to work with multilevel modulations, its high tolerance to chromatic dispersion, and its high flexibility and granularity in terms of bandwidth management. Given the above, the aim of this Thesis is to study deeply the advantages and challenges of implementing the standard OFDM as an access network solution; likewise, it offers solutions to improve its performance. In order to evaluate the main structures and strategies for OFDM-based PON, a comparative analysis of all of them is performed firstly, highlighting their sensitivity levels, maximum range and number of users. A key aspect for network providers is the cost of operation, deployment and maintenance of networks. As a low-cost solution, this Thesis proposes a network model called Statistical-OFDMA-PON based on intensity modulation and direct detection. In addition, dynamic bandwidth management strategies are applied into this model getting an improvement in the power balance which in turn, allows to increase the maximum range and the scalability in number of users. One of the main OFDM problems is the Peak-to-Average Power Ratio (PAPR) which increases with the number of carriers. This thesis proposes a new algorithm based on folding the signal and transmitting auxiliary information in order to compensate the PAPR effect and thus increase the sensitivity of the optical system. On the other hand, OFDMA requires a large number of operations in the digital domain resulting in a high computational effort, which in turn results in an increased cost. For this reason, this Thesis presents a study on the optimization of the required resolution in the Digital-to-Analog / Analog-to-Digital Converters (DAC/ADCs) maintaining the transmission quality. The optimization of the computation time may make the OFDMA-based optical network more attractive for future PONs. Finally, another problem concerning the OFDM optical networks is their sensitivity to Phase Noise (PN). In this regard, this Thesis presents a study of the effect of the laser linewidth and its dependence on signal bandwidth. A mitigation technique based on pilot tones is implemented and the limiting values for the laser linewidth are found to be within the reach of present low-cost light sources.En estas últimas décadas, la industria de las comunicaciones ha adquirido gran importancia y hoy en día, constituye una herramienta imprescindible para el funcionamiento en la sociedad de la información. Así pues, el crecimiento exponencial en la demanda de servicios de banda ancha y la carga de información cada vez mayor que se necesita transmitir ha estimulado la evolución de las infraestructuras del tramo de acceso a la red para poder satisfacer las necesidades del usuario de forma efectiva en términos de costes de instalación y de mantenimiento. Las redes ópticas pasivas (Passive Optical Networks, PON) son actualmente consideradas la alternativa más eficiente y de menor coste para desplegar fibra hasta los hogares. Con el fin de permitir que muchos usuarios coexistan simultáneamente se han desarrollado PONs basadas en multiplexación en tiempo (Time Division Multiplexing Access, TDMA). De cara al futuro, sin embargo, se prevé que estas técnicas no permitan cubrir las exigencias sobre las redes de acceso. En consecuencia, otras técnicas de acceso múltiple al medio como el acceso múltiple por división de longitud de onda (Wavelength Division Multiplexing Access, WDMA) o el acceso múltiple por división de frecuencia ortogonal (Orthogonal Frequency Division Multiplexing Access, OFDMA) se encuentran actualmente en proceso de estudio y desarrollo para su uso en la futura generación de PONs. En concreto, en los últimos años OFDM se ha destacado entre la comunidad científica al considerarse una solución con gran potencial para su futura implantación en redes de acceso pasivas. Esto es especialmente cierto debido a la capacidad que el OFDM para trabajar con modulaciones multinivel, así como su alta tolerancia a la dispersión cromática y a la gran flexibilidad y granularidad que posibilita en términos de gestión del ancho de banda. Por todo lo anterior, el objetivo de esta Tesis es estudiar con profundidad las ventajas y los retos de aplicar el estándar OFDM como solución de red de acceso; del mismo modo, ofrece soluciones para mejorar su rendimiento. Con el objetivo de evaluar las principales estructuras basadas en OFDM-PON, en primer lugar se realiza un análisis comparativo de todas ellas destacando sus niveles de sensibilidad, máximo alcance y número de usuarios. Un aspecto fundamental para los proveedores de red es el coste de operación, despliegue y mantenimiento de las redes. Como solución de bajo coste, esta Tesis propone un modelo de red llamado Statistical-OFDMA-PON que se basa en modulación de intensidad y detección directa. Además, este modelo se completa con estrategias de gestión dinámica del ancho de banda de los usuarios que conforman la estructura de red propuesta consiguiendo una mejora en el balance de potencias que permite aumentar distancia y número de usuarios. Uno de los principales problemas del OFDM es el alto nivel de la relación de potencia de pico a potencia media (Peak-to-Average Power Ratio, PAPR) creciente con el número de portadoras. Esta Tesis propone un nuevo algoritmo basado en el pliegue de la señal y la transmisión de información auxiliar para compensar el efecto del PAPR aumentando así la sensibilidad del sistema óptico. Por otro lado, OFDMA requiere un número elevado de operaciones en el dominio digital resultando en un alto esfuerzo computacional que a su vez se traduce en un aumento del coste. Por esta razón, esta Tesis presenta un estudio sobre la optimización de la resolución requerida en los conversores analógicodigital (Digital-to-Analog/Analog-to-Digital Converters, DAC/ADCs) manteniendo la calidad de transmisión. La optimización del tiempo de cómputo requerido puede dotar de un mayor atractivo la solución de red óptica basada en OFDMA. Finalmente, otro de los problemas que presentan las redes ópticas OFDM es su sensibilidad frente al ruido de fase (Phase Noise, PN). En este aspecto, esta Tesis presenta un estudio del efecto del ancho de línea del láser y su dependencia con el ancho de banda de la señal. Técnicas de mitigación basadas en tonos piloto han sido implementadas y se han encontrado los valores limitantes del ancho de línea dentro del alcance de los láseres de bajo coste
    corecore