583 research outputs found

    Remote sensing of tidal networks and their relation to vegetation

    Get PDF
    The study of the morphology of tidal networks and their relation to salt marsh vegetation is currently an active area of research, and a number of theories have been developed which require validation using extensive observations. Conventional methods of measuring networks and associated vegetation can be cumbersome and subjective. Recent advances in remote sensing techniques mean that these can now often reduce measurement effort whilst at the same time increasing measurement scale. The status of remote sensing of tidal networks and their relation to vegetation is reviewed. The measurement of network planforms and their associated variables is possible to sufficient resolution using digital aerial photography and airborne scanning laser altimetry (LiDAR), with LiDAR also being able to measure channel depths. A multi-level knowledge-based technique is described to extract networks from LiDAR in a semi-automated fashion. This allows objective and detailed geomorphological information on networks to be obtained over large areas of the inter-tidal zone. It is illustrated using LIDAR data of the River Ems, Germany, the Venice lagoon, and Carnforth Marsh, Morecambe Bay, UK. Examples of geomorphological variables of networks extracted from LiDAR data are given. Associated marsh vegetation can be classified into its component species using airborne hyperspectral and satellite multispectral data. Other potential applications of remote sensing for network studies include determining spatial relationships between networks and vegetation, measuring marsh platform vegetation roughness, in-channel velocities and sediment processes, studying salt pans, and for marsh restoration schemes

    Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    Get PDF
    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy=82%, kappa=0.78) and consistency over three imaging dates (overall2010=82%, overall2011=82%, overall2012=88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (â¤28m from shore) for all three dates (2010=79%, 2011=61%, 2012=63%), followed by Juncus roemerianus (2010=11%, 2011=19%, 2012=17%) and Distichlis spicata (2010=4%, 2011=10%, 2012=7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non-oiled shorelines. Only S. alterniflora dominated marshes were extensively degraded, losing 15% (354,604m2) cover in oiled shoreline zones, suggesting that S. alterniflora marshes may be more vulnerable to shoreline erosion following hydrocarbon stress, due to their landscape position

    Retrieval of Salt Marsh Above-ground Biomass From High-spatial Resolution Hyperspectral Imagery Using PROSAIL

    Get PDF
    Salt marsh vegetation density varies considerably on short spatial scales, complicating attempts to evaluate plant characteristics using airborne remote sensing approaches. In this study, we used a mast-mounted hyperspectral imaging system to obtain cm-scale imagery of a salt marsh chronosequence on Hog Island, VA, where the morphology and biomass of the dominant plant species, Spartina alterniflora, varies widely. The high-resolution hyperspectral imagery allowed the detailed delineation of variations in above-ground biomass, which we retrieved from the imagery using the PROSAIL radiative transfer model. The retrieved biomass estimates correlated well with contemporaneously collected in situ biomass ground truth data ( R2=0.73 ). In this study, we also rescaled our hyperspectral imagery and retrieved PROSAIL salt marsh biomass to determine the applicability of the method across spatial scales. Histograms of retrieved biomass changed considerably in characteristic marsh regions as the spatial scale of the imagery was progressively degraded. This rescaling revealed a loss of spatial detail and a shift in the mean retrieved biomass. This shift is indicative of the loss of accuracy that may occur when scaling up through a simple averaging approach that does not account for the detail found in the landscape at the natural scale of variation of the salt marsh system. This illustrated the importance of developing methodologies to appropriately scale results from very fine scale resolution up to the more coarse-scale resolutions commonly obtained in airborne and satellite remote sensing

    Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico — A methodological approach using MODIS

    Get PDF
    Accurate and efficient monitoring is critically important for the effective restoration and conservation of threatened tidal wetlands in the Gulf Coast. The high carbon sequestration potential, habitat for important wildlife and fish, and numerous ecosystem services make these tidal wetlands highly valuable both ecologically and economically to Gulf Coast communities. Our study developed a new methodological approach for mapping biophysical health of coastal tidal wetland habitats in terms of green leaf area index (GLAI), canopy level chlorophyll content (CHL), vegetation fraction (VF), and above ground green biomass (GBM). We measured these biophysical characteristics in tidal wetlands of the northern Gulf of Mexico using a combination of ground data collected from field surveys during the growing seasons of 2010 and 2011 and NASA\u27s Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m and 500 m images. Additionally, we compared and evaluated the performances of both in situ proximal and satellite remote sensing measurements in terms of their potential for mapping the wetland biophysical characteristics. MODIS-based models proved superior at the landscape level compared to models developed from in situ proximal sensing, as species level signals seemed to be diluted at coarser spatial scales. We selected Wide Dynamic Range Vegetation Index (WDRVI) for MODIS 250 m and Visible Atmospheric Resistant Index (VARI) for MODIS 500 m to map biophysical characteristics of tidal wetlands. Time-series composites and phenological information derived using the MODIS based models captured the impact of the selected disturbances in the last decade on the ecological and physiological status of the tidal wetland habitats in the Gulf Coast. This is the first study to employ MODIS data to analyze the biophysical characteristics of tidal wetlands in the Gulf Coast, which, in turn, has the potential to improve our ability to predict their productivity and carbon sequestration potential. These techniques could also be used to assess the success of previous and ongoing tidal wetland restoration projects, and evaluate the productivity of marshes under threat from developmental activity, sea level rise, and industrial pollution

    Hyperspectral Sensors as a Management Tool to Prevent the Invasion of the Exotic Cordgrass Spartina densiflora in the Doñana Wetlands

    Get PDF
    We test the use of hyperspectral sensors for the early detection of the invasive dense-flowered cordgrass (Spartina densiflora Brongn.) in the Guadalquivir River marshes, Southwestern Spain. We flew in tandem a CASI-1500 (368–1052 nm) and an AHS (430–13,000 nm) airborne sensors in an area with presence of S. densiflora. We simplified the processing of hyperspectral data (no atmospheric correction and no data-reduction techniques) to test if these treatments were necessary for accurate S. densiflora detection in the area. We tested several statistical signal detection algorithms implemented in ENVI software as spectral target detection techniques (matched filtering, constrained energy minimization, orthogonal subspace projection, target-constrained interference minimized filter, and adaptive coherence estimator) and compared them to the well-known spectral angle mapper, using spectra extracted from ground-truth locations in the images. The target S. densiflora was easy to detect in the marshes by all algorithms in images of both sensors. The best methods (adaptive coherence estimator and target-constrained interference minimized filter) on the best sensor (AHS) produced 100% discrimination (Kappa = 1, AUC = 1) at the study site and only some decline in performance when extrapolated to a new nearby area. AHS outperformed CASI in spite of having a coarser spatial resolution (4-m vs. 1-m) and lower spectral resolution in the visible and near-infrared range, but had a better signal to noise ratio. The larger spectral range of AHS in the short-wave and thermal infrared was of no particular advantage. Our conclusions are that it is possible to use hyperspectral sensors to map the early spread S. densiflora in the Guadalquivir River marshes. AHS is the most suitable airborne hyperspectral sensor for this task and the signal processing techniques target-constrained interference minimized filter (TCIMF) and adaptive coherence estimator (ACE) are the best performing target detection techniques that can be employed operationally with a simplified processing of hyperspectral images.This study has been funded by the Spanish Ministry of Science and Innovation through the research projects HYDRA (No. CGL2006-02247/BOS) and HYDRA2 (CGL2009-09801/BOS), by the National Parks Authority (Organismo Autonomo de Parques Nacionales) of the Spanish Ministry of Environment to project OAPN 042/2007, and by funding from the European Union (EU) Horizon 2020 research and innovation program under grant agreement No. 641762 to ECOPOTENTIAL project. The Espacio Natural de Doñana provided permits for field work in protected areas with restricted access. We are grateful to the Instituto Nacional de Técnica Aeroespacial (INTA), Spain, for performing the airborne campaign and the geometric correction of the images. J.B. has to acknowledge a sabbatical stay at Pye Laboratory of the Commonwealth Scientific and Research Organization (CSIRO) Marine and Atmospheric Sciences, Australia, and at the Climate Change Cluster (C3) of the University of Technology Sydney, Australia, funded by the Spanish Ministry of Education, during data analysis and writing of this paper. This publication is a contribution from CEIMAR and also a contribution from CEICAMBIO. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform

    Get PDF
    Salt marshes are important coastal areas that consist of a vegetated intertidal marsh platform and a drainage network of tidal channels. How salt marshes and their drainage networks develop is not fully understood, but it has been shown that the biogeomorphic interactions and feedbacks between vegetation development and channel formation play an important role. We examined the relationships among tidal channel sinuosity, marsh roughness, vegetation type (pioneer, Elymus athericus or Phragmites australis), and patch size at different spatial scales using a high-resolution vegetation map (derived from aerial photography) and lower-resolution satellite imagery processed with linear spectral mixture analysis. The patch-size distribution in all vegetation types corresponded to a power law, suggesting the presence of self-organizational processes. While small vegetation patches are more dominant in pioneer vegetation, they were present in all vegetation types. The largest patch size is restricted to E. athericus. We observed an inverse logarithmic relationship between channel sinuosity and vegetation patch size in all vegetation types. The fact that this relationship is observed in both pioneer and later successional stages suggests that after the establishment of a drainage network in the dynamic pioneer stages of salt marsh development, the later stages of salt marsh succession largely inherit the meandering pattern of the early successional stages. Our study confirms recent evidence that no significant changes in the specific features of tidal channel networks (e.g., channel width, drainage density, and efficiency) take place during the later stages of salt marsh development

    Relationship between Land Use and Water Quality and its Assessment Using Hyperspectral Remote Sensing in Mid- Atlantic Estuaries

    Get PDF
    Mid-Atlantic coastal waters are under increasing pressures from anthropogenic disturbances at various temporal and spatial scales exacerbated by the climate change. According to the National Oceanic Atmospheric Association (NOAA), 10 of the 22 estuaries in the Mid-Atlantic, including the Chesapeake Bay, exhibit high levels of eutrophic conditions while seven, including Delaware Bay, exhibit low conditions. Chesapeake Bay is the largest estuarine system in the United States and undergoes frequent eutrophication and low dissolved oxygen events. Although substantially lower in nutrients compared to other Mid-Atlantic Estuaries, the biological, chemical, and ecological status of the Delaware Bay has changed in the past few decades due to high coastal tourism, increased local resident populations, and agricultural activities which have increased nutrient inputs into this shallow coastal bay. As stated by the Academy of Natural Sciences, although the nutrient load has reduced since the Clean Water Act, years of nutrient accumulation, contaminations, and sedimentation have impacted estuarine systems substantially, long-term monitoring is lacking, and ecological responses are not well quantified. Eutrophication within the Bays has degraded water quality conditions advanced by sedimentation. Understanding the quality of the water in any aquatic ecosystem is a critical first step in order to identify characteristics of that ecosystem and draw conclusions about how well adapted the system is in terms of anthropogenic activity and climate change. Determining water quality in intertidal creeks along the Chesapeake and Delaware coastlines is important because land cover is constantly changing. Many of these tidal creeks are lined with forested riparian buffers that may be intercepting nutrients from running off into the waterways. Identifying water conditions, coupled with the marsh land cover, provides a strong foundation to see if the buffer systems are providing the ecosystem services they are designed to provide. Our primary goal in this chapter is to provide research findings on the application of the hyperspectral remote sensing to monitor specific land-use activities and water quality. Along with hyperspectral remote sensing, our monitoring was coupled with the integration of remotely sensed data, global positioning system (GPS), and geographic information system (GIS) technologies that provide a valuable tool for monitoring and assessing waterways in the Mid-Atlantic Estuaries

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies
    • …
    corecore