58,589 research outputs found

    Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG)

    Get PDF
    The International Pharmaco-EEG Society (IPEG) presents updated guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-EEG data in man. Since the publication of the first pharmaco-EEG guidelines in 1982, technical and data processing methods have advanced steadily, thus enhancing data quality and expanding the palette of tools available to investigate the action of drugs on the central nervous system (CNS), determine the pharmacokinetic and pharmacodynamic properties of novel therapeutics and evaluate the CNS penetration or toxicity of compounds. However, a review of the literature reveals inconsistent operating procedures from one study to another. While this fact does not invalidate results per se, the lack of standardisation constitutes a regrettable shortcoming, especially in the context of drug development programmes. Moreover, this shortcoming hampers reliable comparisons between outcomes of studies from different laboratories and hence also prevents pooling of data which is a requirement for sufficiently powering the validation of novel analytical algorithms and EEG-based biomarkers. The present updated guidelines reflect the consensus of a global panel of EEG experts and are intended to assist investigators using pharmaco-EEG in clinical research, by providing clear and concise recommendations and thereby enabling standardisation of methodology and facilitating comparability of data across laboratories

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    In vivo characterization of hippocampal electrophysiological processes in the heterozygous Pten knockout model of autism

    Get PDF
    While cognitive deficits have been described in the heterozygous Pten (+/-) KO mouse model of autism, little work has been done to demonstrate how corresponding in vitro physiological alterations in this model may underpin these cognitive deficits in vivo. As Pten KO (+/-) is known to alter electrophysiological characteristics of neurons in vitro, this study measures the in vivo electrophysiological characteristics of CA1 interneurons, pyramidal cells, and place cells which may underlie the spatial cognitive deficits seen in the model. Four transgenic conditional heterozygous Pten+/loxPloxP;Gfap-cre mice (HetPten) and four homozygous Pten littermate control mice were used in this study. This transgene drives cre expression and excision of the Pten gene in hippocampal granule cells of the dentate gyrus, and neurons in CA2 and CA1, but not astrocytes. In vivo local field potentials and single cell recordings were made in CA1 of each mouse during an open field foraging task in two distinct arenas. HetPten mice were found to have increased interneuron and pyramidal cell firing rates. In addition, place cells demonstrated abnormal properties including increased out-of-field firing rates, an increased number of fields, and trends towards larger field sizes that were less stable in comparison to controls. HetPten mice had slower CA1 fast gamma oscillations and more variable speed/theta oscillation correlations. Behaviorally, there were weak trends towards decreased motor output compared to controls. These data suggest that the electrophysiological alterations due to Pten KO (+/-) in mouse hippocampal neurons lead to hyperactivation of CA1 interneurons, pyramidal cells, and place cells

    Mindreading in a dog: an adaptation of a primate ‘mental attribution’ study

    Get PDF
    In the framework of a longitudinal case study on a male tervueren dog, Philip, the present paper was aimed to get a more sophisticated insight into the cognitive functioning of the dog's mind. Our experiment was designed to study the dog's ability to recognize knowledge or ignorance in others. The procedure used here was identical to that used in an ape-study (Gómez & Teixidor, 1992) and therefore provides the possibility for direct dog-ape comparison regarding their performance. Results show that similarly to the case with this “enculturated” orangutan, after few trials Philip was able to adjust his communicative behaviour to the state of knowledge of his human partner and cooperated successfully in the problem solving task (getting the ball). The exact mechanism underlying this communicative behaviour is still not clear, and both low- and high-level explanations are considered. We suggest that this approach gives a new possibility to conduct comparative studies aimed to understand the evolution of social cognition

    AFTI/F-16 flight test results and lessons

    Get PDF
    The advanced fighter technology integration (AFTI) F-16 aircraft is a highly complex digital flight control system integrated with advanced avionics and cockpit. The use of dissimilar backup modes if the primary system fails requires the designer to trade off system simplicity and capability. The tradeoff is evident in the AFTI/F-16 aircraft with its limited stability and fly by wire digital flight control systems when a generic software failure occurs the backup or normal mode must provide equivalent envelop protection during the transition to degraded flight control. The complexity of systems like the AFTI/F-16 system defines a second design issue, which is divided into two segments: (1) the effect on testing, (2) and the pilot's ability to act correctly in the limited time available for cockpit decisions. The large matrix of states possible with the AFTI/F-16 flight control system illustrates the difficulty of both testing the system and choosing real time pilot actions. The third generic issue is the possible reductions in the user's reliability expectations where false single channel information can be displayed at the pilot vehicle interface while the redundant set remains functional

    Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    Get PDF
    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected

    Evaluation of High-Precision Sensors in Structural Monitoring

    Get PDF
    One of the most intricate branches of metrology involves the monitoring of displacements and deformations of natural and anthropogenic structures under environmental forces, such as tidal or tectonic phenomena, or ground water level changes. Technological progress has changed the measurement process, and steadily increasing accuracy requirements have led to the continued development of new measuring instruments. The adoption of an appropriate measurement strategy, with proper instruments suited for the characteristics of the observed structure and its environmental conditions, is of high priority in the planning of deformation monitoring processes. This paper describes the use of precise digital inclination sensors in continuous monitoring of structural deformations. The topic is treated from two viewpoints: (i) evaluation of the performance of inclination sensors by comparing them to static and continuous GPS observations in deformation monitoring and (ii) providing a strategy for analyzing the structural deformations. The movements of two case study objects, a tall building and a geodetic monument in Istanbul, were separately monitored using dual-axes micro-radian precision inclination sensors (inclinometers) and GPS. The time series of continuous deformation observations were analyzed using the Least Squares Spectral Analysis Technique (LSSA). Overall, the inclinometers showed good performance for continuous monitoring of structural displacements, even at the sub-millimeter level. Static GPS observations remained insufficient for resolving the deformations to the sub-centimeter level due to the errors that affect GPS signals. With the accuracy advantage of inclination sensors, their use with GPS provides more detailed investigation of deformation phenomena. Using inclinometers and GPS is helpful to be able to identify the components of structural responses to the natural forces as static, quasi-static, or resonant
    corecore