2,587 research outputs found

    Survey and 3D modelling of underground heritage spaces with complex geometry: surface optimisation for association with HBIM methodology

    Get PDF
    The historic centres of many cities have interior underground cavities or empty spaces dating from different periods. This paper establishes guidelines for systematising and simplifying the collection of data from underground heritage spaces, with the ultimate aim of facilitating the management of the information obtained and encouraging the conservation and public appreciation of this type of heritage hidden beneath the surface of our cities. The case study selected is a Roman cistern belonging to the network of underground heritage structures in Carmona. The photogrammetric survey conducted presented an additional complexity due to the small size of the space and its underground location. As the next step in the research, a 3D model is created. Lastly, a set of optimised strategies specific is proposed to the unique nature of this type of heritage

    Radioactive Tank Waste Remediation Focus Area. Technology summary

    Full text link

    GPR applications across Engineering and Geosciences disciplines in Italy: a review

    Get PDF
    In this paper, a review of the main ground-penetrating radar (GPR) applications, technologies, and methodologies used in Italy is given. The discussion has been organized in accordance with the field of application, and the use of this technology has been contextualized with cultural and territorial peculiarities, as well as with social, economic, and infrastructure requirements, which make the Italian territory a comprehensive large-scale study case to analyze. First, an overview on the use of GPR worldwide compared to its usage in Italy over the history is provided. Subsequently, the state of the art about the main GPR activities in Italy is deepened and divided according to the field of application. Notwithstanding a slight delay in delivering recognized literature studies with respect to other forefront countries, it has been shown how the Italian contribution is now aligned with the highest world standards of research and innovation in the field of GPR. Finally, possible research perspectives on the usage of GPR in Italy are briefly discussed

    Ground-penetrating radar time-frequency analysis method based on synchrosqueezing wavelet transformation

    Get PDF
    Compared with conventional time-frequency analysis method, synchrosqueezing wavelet transformation (SST) exhibits high resolution capability and good application effect. In this study, SST is introduced to ground-penetrating radar (GPR) processing. This method is applied to analyze a continuous electromagnetic signal. SST can obtain a higher resolution and a better processing effect than conventional wavelet transform and short-time Fourier analysis. In the application of GPR forward analysis data, the transform can correctly distinguish different interfaces and objects. Its resolution increases as frequency increases. However, compression wavelet modulus gradually decays as frequency increases. The proposed method is applied to detect tunnel lining under actual conditions and in a strong noise background. Indeed, the method can efficiently identify interfaces and abnormalities

    An overview of current status of carbon dioxide capture and storage technologies

    Get PDF
    AbstractGlobal warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    Towards a National 3D Mapping Product for Great Britain

    Get PDF
    Knowing where something happens and where people are located can be critically important to understand issues ranging from climate change to road accidents, crime, schooling, transport and much more. To analyse these spatial problems, two-dimensional representations of the world, such as paper or digital maps, have traditionally been used. Geographic information systems (GIS) are the tools that enable capture, modelling, storage, retrieval, sharing, manipulation, analysis, and presentation of geographically referenced data. Three-dimensional geographic information (3D GI) is data that can represent real-world features as objects in 3D space. 3D GI offers additional functionality not possible in 2D, including analysing and querying volume, visibility, surface and sub-surface, and shadowing. This thesis contributes to the understanding of user requirements and other data related considerations in the production of 3D geographic information at a national level. The study promotes Ordnance Survey’s efforts in developing a 3D geographic product through: (1) identifying potential applications; (2) analysing existing 3D city modelling approaches; (3) eliciting and formalising user requirements; (4) developing metrics to describe the usefulness of 3D data and; (5) evaluating the commerciality of 3D GI. A review of current applications of 3D showed that visualisation dominated as the main use, allowing for better communication, and supporting decision-making processes. Reflecting this, an examination of existing 3D city models showed that, despite the varying modelling approaches, there was a general focus towards accurate and realistic geometric representation of the urban environment. Web-based questionnaires and semi-structured interviews revealed that while some applications (e.g. subsurface, photovoltaics, air and noise quality) lead the field with a high adoption of 3D, others were laggards due to organisational inertia (e.g. insurance, facilities management). Individuals expressed positive views on the use of 3D, but still struggled to justify the value and business case. Simple building geometry coupled with non-building thematic classes was perceived to be most useful by users. Several metrics were developed to quantify and compare the characteristics of thirty-three 3D datasets. Results showed that geometry-based metrics such as minimum feature length or Euler characteristic can be used to provide additional information as part of fitness-for-purpose evaluations. The metrics can also contribute to quality control during data production. An investigation into the commercial opportunities explored the economic value of 3D, the market size of 3D data in Great Britain, as well as proposed a number of opportunities within the wider business context of Ordnance Survey

    A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?

    Full text link
    Autonomous driving at level five does not only means self-driving in the sunshine. Adverse weather is especially critical because fog, rain, and snow degrade the perception of the environment. In this work, current state of the art light detection and ranging (lidar) sensors are tested in controlled conditions in a fog chamber. We present current problems and disturbance patterns for four different state of the art lidar systems. Moreover, we investigate how tuning internal parameters can improve their performance in bad weather situations. This is of great importance because most state of the art detection algorithms are based on undisturbed lidar data

    Technologies Enabling Exploration of Skylights, Lava Tubes and Caves

    Get PDF
    Robotic exploration of skylights and caves can seek out life, investigate geology and origins, and open the subsurface of other worlds to humankind. However, exploration of these features is a daunting venture. Planetary voids present perilous terrain that requires innovative technologies for access, exploration, and modeling. This research developed technologies for venturing underground and conceived mission architectures for robotic expeditions that explore skylights, lava tubes and caves. The investigation identified effective designs for mobile robot architecture to explore sub-planetary features. Results provide insight into mission architectures, skylight reconnaissance and modeling, robot configuration and operations, and subsurface sensing and modeling. These are developed as key enablers for robotic missions to explore planetary caves. These results are compiled to generate "Spelunker", a prototype mission concept to explore a lunar skylight and cave. The Spelunker mission specifies safe landing on the rim of a skylight, tethered descent of a power and communications hub, and autonomous cave exploration by hybrid driving/hopping robots. A technology roadmap was generated identifying the maturation path for enabling technologies for this and similar missions
    corecore