164 research outputs found

    Experimental Investigation of Decoupled Discontinuous PWM Strategies in Open-End Winding Induction Motor Supplied by a Common DC-link

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/JESTPE.2023.3258799Currently, open-end winding induction motors fed by a dual inverter (OEWIM-DI) present an innovative approach to enhance the performance of modern electric drive systems, such as electrical vehicles and electric aircraft applications. However, the DI topology requires a proper switching control strategy to enable the OEWIM drive to fully achieve its performance. This work aims to investigate experimentally the impact of different decoupled discontinuous pulsewidth modulation (DDPWM) control strategies on the performance of the OEWIM-DI supplied by a common dc-link. The criteria performances adopted in this study are: 1) the total harmonic distortion (THD) of the current and voltage; 2) the zero sequence voltage (ZSV); 3) the common mode voltage (CMV); and 4) the DI losses. The various DDPWM control schemes for the 1.5-kW OEWIM-DI motor drive are implemented on a dSPACE 1104 board, and the results are compared with the popular and widely used space-vector PWM (SVPWM) strategy. From the results, it can be concluded that the optimized DDPWM technique gives the best performance. This technique has reduced the CMV by one level and reduces the losses by 50% while having the same THD and ZSV obtained with the SVPWM technique.Peer reviewe

    デュアルインバータ駆動オープン巻線誘導電動機の位相制御変調を用いた低負荷領域における高調波低減に関する研究

    Get PDF
    国立大学法人長岡技術科学大

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation

    Performance Analysis of a Three-to-Five Phase Dual Matrix Converter Based on Space Vector Pulse Width Modulation

    Get PDF
    In this paper, space vector pulse width modulation (SVPWM)-based algorithms for a five-phase open-end load fed from dual matrix converter (DMC) have been proposed. In the presented modulation methods, the reference output voltage vector is synthesized from two three-to-five phase matrix converters at both the ends of the load. Depending on the power-sharing of the two MCs, two proposed modulation methods are defined as equal reference sharing (ERS) and unequal reference sharing (URS). The performance of ERS and URS for the three-to-five phase DMC drive is compared. Performance comparison is based on the total harmonic distortion in the output voltages and the percentage of the voltage transferred from the source to the load, for the full linear modulation index (MI) range. Common mode voltage and zero sequence current in the load are also discussed. The efficiency of the ERS and URS is compared. It has been observed that the proposed ERS scheme offers better performance compared with URS for most of the MI values. The suggested modulation techniques are implemented in MATLAB/Simulink. The hardware setup is developed and control algorithm is implemented using dSPACE working in conjunction with the FPGA interface board for practical validation

    Special Power Electronics Converters and Machine Drives with Wide Band-Gap Devices

    Get PDF
    Power electronic converters play a key role in power generation, storage, and consumption. The major portion of power losses in the converters is dissipated in the semiconductor switching devices. In recent years, new power semiconductors based on wide band-gap (WBG) devices have been increasingly developed and employed in terms of promising merits including the lower on-state resistance, lower turn-on/off energy, higher capable switching frequency, higher temperature tolerance than conventional Si devices. However, WBG devices also brought new challenges including lower fault tolerance, higher system cost, gate driver challenges, and high dv/dt and resulting increased bearing current in electric machines. This work first proposed a hybrid Si IGBTs + SiC MOSFETs five-level transistor clamped H-bridge (TCHB) inverter which required significantly fewer number of semiconductor switches and fewer isolated DC sources than the conventional cascaded H-bridge inverter. As a result, system cost was largely reduced considering the high price of WBG devices in the present market. The semiconductor switches operated at carrier frequency were configured as Silicon Carbide (SiC) devices to improve the inverter efficiency, while the switches operated at fundamental output frequency (i.e., grid frequency) were constituted by Silicon (Si) IGBT devices. Different modulation strategies and control methods were developed and compared. In other words, this proposed SiC+Si hybrid TCHB inverter provided a solution to ride through a load short-circuit fault. Another special power electronic, multiport converter, was designed for EV charging station integrated with PV power generation and battery energy storage system. The control scheme for different charging modes was carefully developed to improve stabilization including power gap balancing, peak shaving, and valley filling, and voltage sag compensation. As a result, the influence on the power grid was reduced due to the matching between daily charging demand and adequate daytime PV generation. For special machine drives, such as slotless and coreless machines with low inductance, low core losses, typical drive implementations using conventional silicon-based devices are performance limited and also produce large current and torque ripples. In this research, WBG devices were employed to increase inverter switching frequency, reduce current ripple, reduce filter size, and as a result reduce drive system cost. Two inverter drive configurations were proposed and implemented with WBG devices in order to mitigate such issues for 2-phase very low inductance machines. Two inverter topologies, i.e., a dual H-bridge inverter with maximum redundancy and survivability and a 3-leg inverter for reduced cost, were considered. Simulation and experimental results validated the drive configurations in this dissertation. An integrated AC/AC converter was developed for 2-phase motor drives. Additionally, the proposed integrated AC/AC converter was systematically compared with commonly used topologies including AC/DC/AC converter and matrix converters, in terms of the output voltage/current capability, total harmonics distortion (THD), and system cost. Furthermore, closed-loop speed controllers were developed for the three topologies, and the maximum operating range and output phase currents were investigated. The proposed integrated AC/AC converter with a single-phase input and a 2-phase output reduced the switch count to six and resulting in minimized system cost and size for low power applications. In contrast, AC/DC/AC pulse width modulation (PWM) converters contained twelve active power semiconductor switches and a common DC link. Furthermore, a modulation scheme and filters for the proposed converter were developed and modeled in detail. For the significantly increased bearing current caused by the transition from Si devices to WBG devices, advanced modeling and analysis approach was proposed by using coupled field-circuit electromagnetic finite element analysis (FEA) to model bearing voltage and current in electric machines, which took into account the influence of distributed winding conductors and frequency-dependent winding RL parameters. Possible bearing current issues in axial-flux machines, and possibilities of computation time reduction, were also discussed. Two experimental validation approaches were proposed: the time-domain analysis approach to accurately capture the time transient, the stationary testing approach to measure bearing capacitance without complex control development or loading condition limitations. In addition, two types of motors were employed for experimental validation: an inside-out N-type PMSM was used for rotating testing and stationary testing, and an N-type BLDC was used for stationary testing. Possible solutions for the increased CMV and bearing currents caused by the implementation of WGB devices were discussed and developed in simulation validation, including multi-carrier SPWM modulation and H-8 converter topology

    PWM Techniques for Control of Dual-Inverter Supplied Six-Phase Drives

    Get PDF
    Among the different multiphase ac drive solutions, one of the most widely reported in the literature is the six-phase machine. The machines can be realised into two different configurations, symmetrical and asymmetrical. For the symmetrical configuration, the stator winding consists of two sets of three-phase windings that are spatially shifted by 60 degrees where spatial displacement between any two consecutive phases is the same and equal to 60 degrees. For the asymmetrical configuration, the two sets of three-phase windings are spatially shifted by 30 degrees. As a result, the spatial shift between consecutive phases becomes non-equidistant.In this thesis, modulation techniques for both symmetrical and asymmetrical six-phase machines are investigated. The machines are configured in open-end winding configuration where both ends of the stator winding are connected to separate isolated inverters in a topology known as dual-inverter supply. Compared to conventional single-sided supply topology where one end of the winding is connected to an inverter while the other side is star-connected, some additional benefits are offered by the dual-inverter supply topology. First, fault tolerance of the drive is improved, since the supply is realised with two independent inverters. In case one of the inverters is faulted, the other can continue to provide power to the machine. Second, the same phase voltages can be achieved with half the dc-link voltages on the two inverter inputs compared to the single-sided supply, which can be useful in applications such as electric and hybrid electric vehicles and medium sized ships, where the dc voltage levels are limited. Further, due to the nature of the topology, additional diodes and capacitors like in the Neutral Point Clamped (NPC) and Flying Capacitor (FC) VSIs are not required. The latter results in a further advantage - capacitor voltage balancing techniques are not required.Two pulse width modulation (PWM) techniques for control of the dual-inverter supplied six-phase drives are proposed in this thesis. The first is a reference sharing algorithm where the inverters are modulated using reference voltage that is shared equally and unequally between the two modulators. For both symmetrical and asymmetrical six-phase drives, a better performance, in term of total harmonic distortion (THD) of phase voltage is obtained when the reference is shared unequally between the two modulators. The second technique is carrier-based modulation where the modulation of the two inverters is determined by the disposition of the carrier signals. Three variations of carrier signals disposition are investigated namely; the phase disposition (PD-PWM), alternate phase opposition disposition (APOD-PWM) and phase-shifted PWM (PS-PWM). For the symmetrical six-phase drive, the best phase voltage and current THDs are obtained using APOD-PWM while for asymmetrical six-phase drive, the APOD-PWM produces the worst current THD despite having the best voltage THD among the three methods.All the developed modulation techniques are analysed using simulations and experiments undertaken using a laboratory prototypes. The waveforms and spectra of phase voltage and load current obtained from the simulation and experimental works are presented in this thesis together with the THD of both the voltage and current over entire linear modulation range

    Technical Review of Dual Inverter Topologies for More Electric Aircraft Applications

    Get PDF
    Electric drives are an essential part of more electric aircraft (MEA) applications with ever-growing demands for high power density, high performance, and high fault-tolerant capability. High-speed motor drives can fulfil those needs, but their speeds are subject to the relatively low DC-link voltage adopted by MEA. The power inverters are thus expected to efficiently and effectively manage that limited voltage. A recently popular topology is represented by the dual inverters. They are featured by inherited fault tolerance, a high DC-link voltage utilization and an excellent output power profile. This paper aims to present a comprehensive review of different structures based on the dual inverter. To meet the stringent requirements of MEA applications, three performance aspects, including the voltage utilization, the inverter output quality and the fault-tolerant capability, are selected. Based on the chosen performance metrics, the key features of adopting dual inverter topologies against other converter selections are explicitly demonstrated. Finally, a practical guideline for choosing suitable dual inverters for different MEA applications is provided

    Computer Simulation of PMSM Motor with Five Phase Inverter Control using Signal Processing Techniques

    Get PDF
    The signal processing techniques and computer simulation play an important role in the fault diagnosis and tolerance of all types of machines in the first step of design. Permanent magnet synchronous motor (PMSM) and five phase inverter with sine wave pulse width modulation (SPWM) strategy is developed. The PMSM speed is controlled by vector control. In this work, a fault tolerant control (FTC) system in the PMSM using wavelet switching is introduced. The feature extraction property of wavelet analysis used the error as obtained by the wavelet de-noised signal as input to the mechanism unit to decide the healthy system. The diagnosis algorithm, which depends on both wavelet and vector control to generate PWM as current based manage any parameter variation. An open-end phase PMSM has a larger range of speed regulation than normal PMSM. Simulation results confirm the validity and effectiveness of the switching strategy
    corecore