995 research outputs found

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    Analysis of Data mining based Software Defect Prediction Techniques

    Get PDF
    Software bug repository is the main resource for fault prone modules. Different data mining algorithms are used to extract fault prone modules from these repositories. Software development team tries to increase the software quality by decreasing the number of defects as much as possible. In this paper different data mining techniques are discussed for identifying fault prone modules as well as compare the data mining algorithms to find out the best algorithm for defect prediction

    A New Improved Prediction of Software Defects Using Machine Learning-based Boosting Techniques with NASA Dataset

    Get PDF
    Predicting when and where bugs will appear in software may assist improve quality and save on software testing expenses. Predicting bugs in individual modules of software by utilizing machine learning methods. There are, however, two major problems with the software defect prediction dataset: Social stratification (there are many fewer faulty modules than non-defective ones), and noisy characteristics (a result of irrelevant features) that make accurate predictions difficult. The performance of the machine learning model will suffer greatly if these two issues arise. Overfitting will occur, and biassed classification findings will be the end consequence. In this research, we suggest using machine learning approaches to enhance the usefulness of the CatBoost and Gradient Boost classifiers while predicting software flaws. Both the Random Over Sampler and Mutual info classification methods address the class imbalance and feature selection issues inherent in software fault prediction. Eleven datasets from NASA's data repository, "Promise," were utilised in this study. Using 10-fold cross-validation, we classified these 11 datasets and found that our suggested technique outperformed the baseline by a significant margin. The proposed methods have been evaluated based on their abilities to anticipate software defects using the most important indices available: Accuracy, Precision, Recall, F1 score, ROC values, RMSE, MSE, and MAE parameters. For all 11 datasets evaluated, the suggested methods outperform baseline classifiers by a significant margin. We tested our model to other methods of flaw identification and found that it outperformed them all. The computational detection rate of the suggested model is higher than that of conventional models, as shown by the experiments.

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    Analyze the Performance of Software by Machine Learning Methods for Fault Prediction Techniques

    Get PDF
    Trend of using the software in daily life is increasing day by day. Software system development is growing more difficult as these technologies are integrated into daily life. Therefore, creating highly effective software is a significant difficulty. The quality of any software system continues to be the most important element among all the required characteristics. Nearly one-third of the total cost of software development goes toward testing. Therefore, it is always advantageous to find a software bug early in the software development process because if it is not found early, it will drive up the cost of the software development. This type of issue is intended to be resolved via software fault prediction. There is always a need for a better and enhanced prediction model in order to forecast the fault before the real testing and so reduce the flaws in the time and expense of software projects. The various machine learning techniques for classifying software bugs are discussed in this paper

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF
    • …
    corecore