1,650 research outputs found

    Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation

    Get PDF
    © 2014 Elsevier B.V. All rights reserved. This paper presents hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation and their application to control of a flexible manipulator system. Spiral dynamic algorithm (SDA) has faster convergence speed and good exploitation strategy. However, the incorporation of constant radius and angular displacement in its spiral model causes the exploration strategy to be less effective hence resulting in low accurate solution. Bacteria chemotaxis on the other hand, is the most prominent strategy in bacterial foraging algorithm. However, the incorporation of a constant step-size for the bacteria movement affects the algorithm performance. Defining a large step-size results in faster convergence speed but produces low accuracy while de.ning a small step-size gives high accuracy but produces slower convergence speed. The hybrid algorithms proposed in this paper synergise SDA and bacteria chemotaxis and thus introduce more effective exploration strategy leading to higher accuracy, faster convergence speed and low computation time. The proposed algorithms are tested with several benchmark functions and statistically analysed via nonparametric Friedman and Wilcoxon signed rank tests as well as parametric t-test in comparison to their predecessor algorithms. Moreover, they are used to optimise hybrid Proportional-Derivative-like fuzzy-logic controller for position tracking of a flexible manipulator system. The results show that the proposed algorithms significantly improve both convergence speed as well as fitness accuracy and result in better system response in controlling the flexible manipulator

    A Multi-Agent Architecture for the Design of Hierarchical Interval Type-2 Beta Fuzzy System

    Get PDF
    This paper presents a new methodology for building and evolving hierarchical fuzzy systems. For the system design, a tree-based encoding method is adopted to hierarchically link low dimensional fuzzy systems. Such tree structural representation has by nature a flexible design offering more adjustable and modifiable structures. The proposed hierarchical structure employs a type-2 beta fuzzy system to cope with the faced uncertainties, and the resulting system is called the Hierarchical Interval Type-2 Beta Fuzzy System (HT2BFS). For the system optimization, two main tasks of structure learning and parameter tuning are applied. The structure learning phase aims to evolve and learn the structures of a population of HT2BFS in a multiobjective context taking into account the optimization of both the accuracy and the interpretability metrics. The parameter tuning phase is applied to refine and adjust the parameters of the system. To accomplish these two tasks in the most optimal and faster way, we further employ a multi-agent architecture to provide both a distributed and a cooperative management of the optimization tasks. Agents are divided into two different types based on their functions: a structure agent and a parameter agent. The main function of the structure agent is to perform a multi-objective evolutionary structure learning step by means of the Multi-Objective Immune Programming algorithm (MOIP). The parameter agents have the function of managing different hierarchical structures simultaneously to refine their parameters by means of the Hybrid Harmony Search algorithm (HHS). In this architecture, agents use cooperation and communication concepts to create high-performance HT2BFSs. The performance of the proposed system is evaluated by several comparisons with various state of art approaches on noise-free and noisy time series prediction data sets and regression problems. The results clearly demonstrate a great improvement in the accuracy rate, the convergence speed and the number of used rules as compared with other existing approaches

    Role of optimization algorithms based fuzzy controller in achieving induction motor performance enhancement.

    Get PDF
    Three-phase induction motors (TIMs) are widely used for machines in industrial operations. As an accurate and robust controller, fuzzy logic controller (FLC) is crucial in designing TIMs control systems. The performance of FLC highly depends on the membership function (MF) variables, which are evaluated by heuristic approaches, leading to a high processing time. To address these issues, optimisation algorithms for TIMs have received increasing interest among researchers and industrialists. Here, we present an advanced and efficient quantum-inspired lightning search algorithm (QLSA) to avoid exhaustive conventional heuristic procedures when obtaining MFs. The accuracy of the QLSA based FLC (QLSAF) speed control is superior to other controllers in terms of transient response, damping capability and minimisation of statistical errors under diverse speeds and loads. The performance of the proposed QLSAF speed controller is validated through experiments. Test results under different conditions show consistent speed responses and stator currents with the simulation results

    An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation

    Get PDF
    Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t -way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, metaheuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyperheuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS),using the t -way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    MSA for Optimal Reconfiguration and Capacitor Allocation in Radial/Ring Distribution Networks

    Get PDF
    This work presents a hybrid heuristic search algorithm called Moth Swarm Algorithm (MSA) in the context of power loss minimization of radial distribution networks (RDN) through optimal allocation and rating of shunt capacitors for enhancing the performance of distribution networks. With MSA, different optimization operators are used to mimic a set of behavioral patterns of moths in nature, which allows for flexible and powerful optimizer. Hence, a new dynamic selection strategy of crossover points is proposed based on population diversity to handle the difference vectors Lévy-mutation to force MSA jump out of stagnation and enhance its exploration ability. In addition, a spiral motion, adaptive Gaussian walks, and a novel associative learning mechanism with immediate memory are implemented to exploit the promising areas in the search space. In this article, the MSA is tested to adapt the objective function to reduce the system power losses, reduce total system cost and consequently increase the annual net saving with inequity constrains on capacitor size and voltage limits. The validation of the proposed algorithm has been tested and verified through small, medium and large scales of standard RDN of IEEE (33, 69, 85-bus) systems and also on ring main systems of 33 and 69-bus. In addition, the obtained results are compared with other algorithms to highlight the advantages of the proposed approach. Numerical results stated that the MSA can achieve optimal solutions for losses reduction and capacitor locations with finest performance compared with many existing algorithms

    A modified whale optimization algorithm-based adaptive fuzzy logic PID controller for load frequency control of autonomous power generation systems

    Get PDF
    An autonomous power generation system (APGS) contains units such as diesel energy generator, solar photovoltaic units, wind turbine generator and fuel cells along with energy-storing units such as the flywheel energy storage system and battery energy storage system. The components either run at lower/higher power output or may turn on/off at different instants of their operation. Due to this, the conventional controllers will not provide desired performance under varied load conditions. This paper proposes an adaptive fuzzy logic PID (AFPID) controller for load frequency control. In order to achieve an improved performance, a modified whale optimization algorithm (mWOA) was also proposed in this paper for tuning of the AFPID parameters. The proposed algorithm was first evaluated using standard test functions and compared with other recent algorithms to authenticate the competence of algorithm. The proposed mWOA algorithm outperforms PSO, GSA, DE and FEP algorithms in five out of seven unimodal test functions and four out of six multimodal test functions. The effectiveness of the AFPID compared with the conventional PID and the proposed AFPID provides better performance. Reduction of 39.13% in error criteria (objective function) compared with WOA-PID controller. The proposed approach was also compared with some recently proposed frequency control approaches in a widely used two-area test system
    corecore